In this book the authors give the first necessary and sufficient conditions for the uniform convergence a.s. of random Fourier series on locally compact Abelian groups and on compact non-Abelian groups. They also obtain many related results. For example, whenever a random Fourier series converges uniformly a.s. it also satisfies the central limit theorem. The methods developed are used to study some questions in harmonic analysis that are not intrinsically random. For example, a new characterization of Sidon sets is derived.
The major results depend heavily on the Dudley-Fernique necessary and sufficient condition for the continuity of stationary Gaussian processes and on recent work on sums of independent Banach space valued random variables. It is noteworthy that the proofs for the Abelian case immediately extend to the non-Abelian case once the proper definition of random Fourier series is made. In doing this the authors obtain new results on sums of independent random matrices with elements in a Banach space. The final chapter of the book suggests several directions for further research.
Michael B. Marcus & Gilles Pisier
Random Fourier Series with Applications to Harmonic Analysis [PDF ebook]
Random Fourier Series with Applications to Harmonic Analysis [PDF ebook]
Koop dit e-boek en ontvang er nog 1 GRATIS!
Taal Engels ● Formaat PDF ● Pagina’s 152 ● ISBN 9781400881536 ● Bestandsgrootte 7.4 MB ● Uitgeverij Princeton University Press ● Stad Princeton ● Land US ● Gepubliceerd 2016 ● Downloadbare 24 maanden ● Valuta EUR ● ID 5492010 ● Kopieerbeveiliging Adobe DRM
Vereist een DRM-compatibele e-boeklezer