Tao Mei 
Operator Valued Hardy Spaces [PDF ebook] 

Ondersteuning

The author gives a systematic study of the Hardy spaces of functions with values in the noncommutative $L^p$-spaces associated with a semifinite von Neumann algebra $/mathcal{M}.$ This is motivated by matrix valued Harmonic Analysis (operator weighted norm inequalities, operator Hilbert transform), as well as by the recent development of noncommutative martingale inequalities. In this paper noncommutative Hardy spaces are defined by noncommutative Lusin integral function, and it is proved that they are equivalent to those defined by noncommutative Littlewood-Paley G-functions. The main results of this paper include: (i) The analogue in the author’s setting of the classical Fefferman duality theorem between $/mathcal{H}^1$ and $/mathrm{BMO}$. (ii) The atomic decomposition of the author’s noncommutative $/mathcal{H}^1.$ (iii) The equivalence between the norms of the noncommutative Hardy spaces and of the noncommutative $L^p$-spaces $(1 < p < /infty )$. (iv) The noncommutative Hardy-Littlewood maximal inequality. (v) A description of $/mathrm{BMO}$ as an intersection of two dyadic $/mathrm{BMO}$. (vi) The interpolation results on these Hardy spaces.

€87.72
Betalingsmethoden
Koop dit e-boek en ontvang er nog 1 GRATIS!
Formaat PDF ● Pagina’s 64 ● ISBN 9781470404857 ● Uitgeverij American Mathematical Society ● Downloadbare 3 keer ● Valuta EUR ● ID 6613071 ● Kopieerbeveiliging Adobe DRM
Vereist een DRM-compatibele e-boeklezer

Meer e-boeken van dezelfde auteur (s) / Editor

49.474 E-boeken in deze categorie