Cyclotomic fields have always occupied a central place in number theory, and the so called 'main conjecture’ on cyclotomic fields is arguably the deepest and most beautiful theorem known about them. It is also the simplest example of a vast array of subsequent, unproven 'main conjectures” in modern arithmetic geometry involving the arithmetic behaviour of motives over p-adic Lie extensions of number fields. These main conjectures are concerned with what one might loosely call the exact formulae of number theory which conjecturally link the special values of zeta and L-functions to purely arithmetic expressions.
Written by two leading workers in the field, this short and elegant book presents in full detail the simplest proof of the 'main conjecture” for cyclotomic fields. Its motivation stems not only from the inherent beauty of the subject, but also from the wider arithmetic interest of these questions. The masterly exposition is intended to be accessible to both graduatestudents and non-experts in Iwasawa theory.
Spis treści
Cyclotomic Fields.- Local Units.- Iwasawa Algebras and p-adic Measures.- Cyclotomic Units and Iwasawa’s Theorem.- Euler Systems.- Main Conjecture.