The intersection of nanostructured materials with photonics and electronics shows great potential for clinical diagnostics, sensors, ultrafast telecommunication devices, and a new generation of compact and fast computers. Nanophotonics draws upon cross-disciplinary expertise from physics, materials science, chemistry, electrical engineering, biology, and medicine to create novel technologies to meet a variety of challenges. This is the first book to focus on novel materials and techniques relevant to the burgeoning area of nanoscale photonics and optoelectronics, including novel-hybrid materials with multifunctional capabilities and recent advancements in the understanding of optical interactions in nanoscale materials and quantum-confined objects. Leading experts provide a fundamental understanding of photonics and the related science and technology of plasmonics, polaritons, quantum dots for nanophotonics, nanoscale field emitters, near-field optics, nanophotonic architecture, and nanobiophotonic materials.
Spis treści
Spontaneous Emission Control in a Plasmonic Structure.- Surface Plasmon Enhanced Solid-State Light-Emitting Devices.- Polariton Devices Based on Wide Bandgap Semiconductor Microcavities.- Search for Negative Refraction in the Visible Region of Light by Fluorescent Microscopy of Quantum Dots Infiltrated into Regular and Inverse Synthetic Opals.- Self-Assembled Guanosine-Based Nanoscale Molecular Photonic Devices.- Carbon Nanotubes for Optical Power Limiting Applications.- Field Emission Properties of Zn O, Zn S, and Ga N Nanostructures.- Growth, Optical, and Transport Properties of Self-Assembled In As/In P Nanostructures.