Huaxin Lin 
Locally AH-Algebras [PDF ebook] 

Apoio

A unital separable $C^/ast$-algebra, $A$ is said to be locally AH with no dimension growth if there is an integer $d>0$ satisfying the following: for any $/epsilon >0$ and any compact subset ${/mathcal F}/subset A, $ there is a unital $C^/ast$-subalgebra, $B$ of $A$ with the form $PC(X, M_n)P$, where $X$ is a compact metric space with covering dimension no more than $d$ and $P/in C(X, M_n)$ is a projection, such that $ /mathrm{dist}(a, B)</epsilon /text{ for all } a/in/mathcal {F}.$ The authors prove that the class of unital separable simple $C^/ast$-algebras which are locally AH with no dimension growth can be classified up to isomorphism by their Elliott invariant. As a consequence unital separable simple $C^/ast$-algebras which are locally AH with no dimension growth are isomorphic to a unital simple AH-algebra with no dimension growth.

€123.63
Métodos de Pagamento
Compre este e-book e ganhe mais 1 GRÁTIS!
Formato PDF ● Páginas 109 ● ISBN 9781470422257 ● Editora American Mathematical Society ● Publicado 2015 ● Carregável 3 vezes ● Moeda EUR ● ID 8056994 ● Proteção contra cópia Adobe DRM
Requer um leitor de ebook capaz de DRM

Mais ebooks do mesmo autor(es) / Editor

49.595 Ebooks nesta categoria