Ludwig Arnold 
Random Dynamical Systems [PDF ebook] 

Apoio

Background and Scope of the Book This book continues, extends, and unites various developments in the intersection of probability theory and dynamical systems. I will briefly outline the background of the book, thus placing it in a systematic and historical context and tradition. Roughly speaking, a random dynamical system is a combination of a measure-preserving dynamical system in the sense of ergodic theory, (D, F, l P’, (B(t))t E’lf), ‘II’= JR+, IR, z+, Z, with a smooth (or topological) dy- namical system, typically generated by a differential or difference equation :i: = f(x) or Xn+l = tp(x., ), to a random differential equation :i: = f(B(t)w, x) or random difference equation Xn+l = tp(B(n)w, Xn)* Both components have been very well investigated separately. However, a symbiosis of them leads to a new research program which has only partly been carried out. As we will see, it also leads to new problems which do not emerge if one only looks at ergodic theory and smooth or topological dynam- ics separately. From a dynamical systems point of view this book just deals with those dynamical systems that have a measure-preserving dynamical system as a factor (or, the other way around, are extensions of such a factor). As there is an invariant measure on the factor, ergodic theory is always involved.

€141.06
Métodos de Pagamento
Compre este e-book e ganhe mais 1 GRÁTIS!
Língua Inglês ● Formato PDF ● ISBN 9783662128787 ● Editora Springer Berlin Heidelberg ● Publicado 2013 ● Carregável 3 vezes ● Moeda EUR ● ID 6344343 ● Proteção contra cópia Adobe DRM
Requer um leitor de ebook capaz de DRM

Mais ebooks do mesmo autor(es) / Editor

48.816 Ebooks nesta categoria