The authors study the complex geometry and coherent cohomology of nonclassical Mumford-Tate domains and their quotients by discrete groups. Their focus throughout is on the domains $D$ which occur as open $G(/mathbb{R})$-orbits in the flag varieties for $G=SU(2, 1)$ and $Sp(4)$, regarded as classifying spaces for Hodge structures of weight three. In the context provided by these basic examples, the authors formulate and illustrate the general method by which correspondence spaces $/mathcal{W}$ give rise to Penrose transforms between the cohomologies $H^{q}(D, L)$ of distinct such orbits with coefficients in homogeneous line bundles.
Compre este e-book e ganhe mais 1 GRÁTIS!
Formato PDF ● Páginas 145 ● ISBN 9781470417246 ● Editora American Mathematical Society ● Carregável 3 vezes ● Moeda EUR ● ID 8056948 ● Proteção contra cópia Adobe DRM
Requer um leitor de ebook capaz de DRM