Tabela de Conteúdo
Contents.- 1-Silicon biogeochemistry in terrestrial ecosystems.- Jörg Schaller, Daniel Puppe.- 1.1 Introduction.- 1.2 Silicon chemistry in soils.- 1.3 Sili...
Tabela de Conteúdo
Contents.- 1-Silicon biogeochemistry in terrestrial ecosystems.- Jörg Schaller, Daniel Puppe.- 1.1 Introduction.- 1.2 Silicon chemistry in soils.- 1.3 Silicon cycling in natural and agricultural plant-soil systems.- 1.3.1. Si bioavailability.- 1.3.2. Si cycling in natural plant-soil systems.- 1.3.3 Si cycling in agricultural plant-soil systems.- 1.4 Silicon mitigating drought.- 1.5 Si controlling nutrient availability and carbon turnover.- 1.6 Concluding remarks.- Reference.- 2- Silicon: transcellular and apoplastic absorption and transport in the xylem .- Rafael Ferreira Barreto, Lúcia Barão.- 2.1 Introduction.- 2.2 Active uptake of Si.- 2.3 Passive uptake of Si.- 2.4 Rejection uptake of Si.- 2.5 Si transport in the xylem.- Reference.- 3- Root silicification and plant resistance to stress .- Zuzana Lukacova, Boris Bokor, Marek Vaculík, Jana Kohanová, Alexander Lux.- Introduction .- Sites of Sideposition in roots.- Silicon transport in plants – from chemistry to cell biology and anatomy.- Silicification in the root cell walls.- Cellulose and Polysaccharides .- Lignin .- Callose.- Proteins .- Phytoliths.- Stegmata.- The function of silica deposits in roots .- Reference.- 4- Dynamics of silicon in soil and plant to establish silicate fertilization.- Brenda S Tubana.- 4.1 Introduction.- 4.2 Silicon in soils.- 4.3 Components of silicon cycle in soil.- 4.4 Bases of silicon fertilization.- 4.5 Conclusion.- 4.6 Reference.- 5- Innovative sources and ways of applying silicon to plants.- Rilner Alves Flores, Maxuel Fellipe Nunes Xavier.- 5.1 Introduction.- 5.2 Sources and ways of supplying Si to tropical crops.- 5.2.1 Silicon sources for soil application or fertigation in tropical regions .- 5.2.2 Silicon sources for foliar application in tropical regions.- 5.3 Final considerations.- Reference.- 6- Silicon mitigates the effects of nitrogen deficiency in plants.- Cid Naudi Silva Campos, Bianca Cavalcante da Silva 6.1 Introduction.- 6.2 Biochemical and physiological effects of N deficiency in plants.- 6.3 Beneficial effect of Si on plants under nutrient deficiency stress.- 6.4 Beneficial action of Si in tropical plants under N deficiency: how can Si mitigate the effects of N deficiency?.- 6.5 Concluding remarks.- Reference.- 7-Silicon mitigates the effects of phosphorus and potassium deficiency in plants .- Gustavo Caione.- 7.1 Introduction.- 7.2 Silicon in the plant.- 7.3 The role of silicon in potassium-deficient plants.- 7.4 The role of silicon in phosphorus-deficient plants.- Reference.- 8- Silicon mitigates the effects of calcium, magnesium and sulfur in plants.- Dalila Lopes da Silva, Renato de Mello Prado 8.1 The relationship calcium and silicon.- 8.1.1 General aspects.- 8.1.2 Sources of calcium and silicon.- 8.1.3 Physiological and biochemical benefits of silicon in mitigating nutritional calcium deficiency.- 8.2 The relationship between magnesium and silicon.- 8.3 The relationship between sulfur and silicon.- 8.4 Conclusions and future perspectives.- Reference.- 9- Silicon mitigates the effects of zinc and manganese deficiency in plants.- Kamilla Silva Oliveira, Guilherme Felisberto, Renato de Mello Prado.- 9.1 Zinc deficiency in tropical plants .- 9.2 Silicon mitigates the effects of zinc deficiency in tropical plants .- 9.2.1 Silicon influences zinc uptake and accumulation .- 9.2.2 Silicon acts on oxidative metabolism and reduces zinc deficiency symptoms .- 9.2.3 Silicon improves physiological responses and increases production in Zn-deficient plants .- 9.3 Manganese deficiency in tropical plants .- 9.4 Silicon mitigates the effects of manganese deficiency in tropical plants .- 9.4.1 Silicon influences manganese uptake and accumulation .- 9.4.2 Silicon acts on oxidative metabolism and reduces manganese deficiency symptoms .- Reference.- 10-Silicon mitigates the effects of boron deficiency and toxicity in plants .- Davie Kadyampakeni, Jonas Pereira de Souza Júnior.- 10.1 Introduction.- 10.2 Boron and silicon interaction in the development of tropical crops.- 10.2.1 Effect on soil solution and root system development.- 10.2.2 Effect on shoot growth and biomass production.- 10.2.3 Effect on the development of reproductive organs.- 10.3 Final considerations.- Reference.- 11- Silicon mitigates the effects of iron deficiency.- Luis Felipe Lata-Tenesaca, Diego Ricardo Villaseñor Ortiz.- 11.1 Introduction .- 11.2 Iron uptake and the benefits of Si.- 11.3 Iron redistribution and the benefits of Si.- 11.4 Effect of Si on oxidative stress in Fe-deficient plants.- 11.5 Final considerations and future perspectives.- Reference.- 12-Silicon mitigates the effects of aluminium toxicity .- Martin J. Hodson.- 12.1 Introduction.- 12.2 A historical perspective.- 12.3 A Brief Consideration of silicon and aluminium in Soils.- 12.4 Silicon and aluminium uptake and accumulation by plants.- 12.4.1 Silicon uptake and accumulation.- 12.4.2 Aluminium uptake and accumulation.- 12.4.3 The interaction between silicon and aluminium uptake and accumulation.- 12.5 The amelioration of aluminium toxicity by silicon in experiments carried out in hydroponic cultures.- 12.5.1 Plant growth .- 12.5.2 Effects on mineral nutrition .- 12.5.3 Effects on oxidative damage .- 12.6 Co-deposition of silicon and aluminium .- 12.6.1 Co-deposition in roots .- 12.6.2 Co-deposition in conifer needles .- 12.6.3 Co-deposition in the leaves of dicot trees .- 12.6.4 Co-deposition in other systems .- 12.7. Possible mechanisms for the mitigation effect .- 12.7.1 Solution effects .- 12.7.2 Mitigation in root systems .- 12.7.3 Mitigation in shoot systems .- 12.7.4 Mitigation in tissue culture systems .- 12.8 Mitigation in plants grown in soil .- 12.9. Conclusion .- Reference.- 13- Structural role of silicon-mediated cell wall stability for ammonium toxicity alleviation.- Mikel Rivero-Marcos, Gabriel Barbosa Silva Júnior, Idoia Ariz 13.1 Introduction.- 13.2 Metabolic targets and structural vulnerability in root cell membranes and cell walls in response to ammonium toxicity.- 13.2.1 High ammonium uptake increases AMT-dependent apoplastic acidification.- 13.2.2 Translocation of ammonium from the root increases ammonium assimilation and acidification in the shoot.- 13.2.3 Ammonium nutrition decreases protein N-glycosylation-dependent ammonium efflux and arrests root elongation.- 13.2.4 Internal ammonium accumulation initiates ROS-dependent cell wall lignification and limits cell growth.- 13.3 Repairing role of Si in plant cell structural components resulting from ammonium nutrition. .- 13.3.1 Silicon decreases oxidative stress caused by excess ammonium .- 13.3.2 Structural role of Si in cell wall stability aiming at ammonium toxicity alleviation.- 13.3.3 Silicon supply mitigates ammonium toxicity symptoms related to plant growth and development.- 13.4 Conclusions and future perspective.- Reference.- 14- Silicon mitigates the effects of potentially toxic metals.- Lilian Aparecida de Oliveira, Flávio José Rodrigues Cruz, Dalila Lopes da Silva, Cassio Hamilton Abreu Junior, Renato de Mello Prado 14.1 Introduction.- 14.2 Hm stress mitigation mechanisms.- 14.3 Effects of silicon on absorption, transport and accumulation of Hm.- 14.4 Antioxidant defense mechanisms.- 14.5 Morphological alterations.- 14.6 Altering gene expression.- 14.7 Conclusions.- Reference.- .- 15- Beneficial role of silicon in plant nutrition under salinity conditions.- Alexander Calero Hurtado; Dilier Olivera Viciedo; Renato de Mello Prado.- 15.1 Introduction.- 15.2 Silicon and salt stress remediation.- 15.3 Role of Si in decreasing Na+ uptake, transport, and accumulation.- 15.4 Increasing mineral uptake by Si under salt stress .- 15.5 Especial role of Si in increasing plant growth, biomass, and yield under salt stress.- 15.6 Conclusions.- Reference.- 16-Silicon mitigates the effects of water deficit in plants.- Gelza Carliane Marques Teixeira; Renato de Mello Prado.- 16.1 Introduction.- 16.2 Damage to tropical plants caused by water deficit .- 16.3 Plant defense system against damage caused by water deficit.- 16.4 Silicon for mitigating damage to tropical plants caused by water deficit .- 16.5 Fertigation and leaf spraying with silicon.- 16.6 Conclusion.- Reference.- 17- Association of silicon and soil microorganisms induces stress mitigation, increasing plant productivity.- Krishan K. Verma, Xiu-Peng Song, Munna Singh, Dan-Dan Tian, Vishnu D. Rajput, Tatiana Minkina, Yang-Rui Li .- 17.1 Introduction.- 17.2 Impact of Si and plant microbiome on plants.- 17.3 Role of plant rhizobacteria and Si on plants during environmental stress .- 17.4 Role of plant hormones with the application of plant microbes and silicon.- 17.5 Crop rotation and fertilizer use .- 17.6 Limitations and concluding remarks of the study.- Reference.- 18- Heat stress m itigation by silicon nutrition in plants: a comprehensive overview.- Jayabalan Shilpha, Abinaya Manivannan, Prabhakaran Soundararajan, Byoung Ryong Jeong.- 18.1 Introduction.- 18.2 Impact of heat stress on plants.- 18.3 Versatile functions of silicon in mitigating stress.- 18.4 Silicon in ROS homeostasis.- 18.5 Si-mediated regulation of heat stress tolerancein plants.- 18.5.1 Rice.- 18.5.2 Wheat.- 18.5.3 Barely.- 18.5.4 Date Palm.- 18.5.5 Tomato.- 18.5.6 Strawberry.- 18.5.7 Cucumber.- 18.5.8 Poinsettia.- 18.5.9 Salvia.- 18.6 Conclusions.- Reference.- 19- Silicon in plants mitigates damage against pathogens and insect pests.- Waqar Islam, Arfa Tauqeer, Abdul Waheed, Habib Ali, Fanjiang Zeng.- Introduction.- 19.2 Mechanisms of silicon against insect pests and pathogens .- 19.2.1 Formation of physical barrier .- 19.2.2 Biochemical mechanisms.- 19.2.3 Biochemical mechanism and physically barrier: a joint action.- 19.3 In-vivo and in-vitro application of silicon for disease and insect pest management .- 19.3.1 Role of silicon in viral disease management.- 19.3.2 Role of silicon in bacterial disease management.- 19.3.3 Role of silicon in fungal disease management.- 19.3.4 Role of silicon in insect pest management.- 19.4 Concluding remarks.- Reference.