This book provides the foundations for geometric applications of convex cones and presents selected examples from a wide range of topics, including polytope theory, stochastic geometry, and Brunn-Minkowski theory. Giving an introduction to convex cones, it describes their most important geometric functionals, such as conic intrinsic volumes and Grassmann angles, and develops general versions of the relevant formulas, namely the Steiner formula and kinematic formula. In recent years questions related to convex cones have arisen in applied mathematics, involving, for example, properties of random cones and their non-trivial intersections. The prerequisites for this work, such as integral geometric formulas and results on conic intrinsic volumes, were previously scattered throughout the literature, but no coherent presentation was available. The present book closes this gap. It includes several pearls from the theory of convex cones, which should be better known.
Rolf Schneider
Convex Cones [PDF ebook]
Geometry and Probability
Convex Cones [PDF ebook]
Geometry and Probability
Compre este e-book e ganhe mais 1 GRÁTIS!
Língua Inglês ● Formato PDF ● ISBN 9783031151279 ● Editora Springer International Publishing ● Publicado 2022 ● Carregável 3 vezes ● Moeda EUR ● ID 8679174 ● Proteção contra cópia Adobe DRM
Requer um leitor de ebook capaz de DRM