Stephen S. Kudla & Michael Rapoport 
Modular Forms and Special Cycles on Shimura Curves [PDF ebook] 

Apoio

Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface ‘M’ attached to a Shimura curve ‘M’ over the field of rational numbers. These generating functions are shown to be the q-expansions of modular forms and Siegel modular forms of genus two respectively, valued in the Gillet-Soulé arithmetic Chow groups of ‘M’. The two types of generating functions are related via an arithmetic inner product formula. In addition, an analogue of the classical Siegel-Weil formula identifies the generating function for zero-cycles as the central derivative of a Siegel Eisenstein series. As an application, an arithmetic analogue of the Shimura-Waldspurger correspondence is constructed, carrying holomorphic cusp forms of weight 3/2 to classes in the Mordell-Weil group of ‘M’. In certain cases, the nonvanishing of this correspondence is related to the central derivative of the standard L-function for a modular form of weight 2. These results depend on a novel mixture of modular forms and arithmetic geometry and should provide a paradigm for further investigations. The proofs involve a wide range of techniques, including arithmetic intersection theory, the arithmetic adjunction formula, representation densities of quadratic forms, deformation theory of p-divisible groups, p-adic uniformization, the Weil representation, the local and global theta correspondence, and the doubling integral representation of L-functions.

€119.99
Métodos de Pagamento

Sobre o autor

Stephen S. Kudla is at the University of Maryland.
Michael Rapoport is at the Mathematisches Institut der Universität, Bonn, Germany.
Tonghai Yang is at the University of Wisconsin, Madison.

Compre este e-book e ganhe mais 1 GRÁTIS!
Língua Inglês ● Formato PDF ● Páginas 392 ● ISBN 9781400837168 ● Tamanho do arquivo 3.7 MB ● Editora Princeton University Press ● Cidade Princeton ● País US ● Publicado 2006 ● Carregável 24 meses ● Moeda EUR ● ID 5489345 ● Proteção contra cópia Adobe DRM
Requer um leitor de ebook capaz de DRM

Mais ebooks do mesmo autor(es) / Editor

48.927 Ebooks nesta categoria