Ulrich Guth & Wolfram Oelßner 
Carbon Dioxide Sensing [PDF ebook] 
Fundamentals, Principles, and Applications

Apoio

The book provides the reader with a profound knowledge of basic principles, properties and preferred applications of diverse kinds of CO2 measurement. It shows the advantages, disadvantages and limitations of several methods and gives a comprehensive overview of both possible applications and corresponding boundary conditions. Applications reach from environmental monitoring to safety control to biotechnology and food control and finally to medicine.

€144.99
Métodos de Pagamento

Tabela de Conteúdo

Scientific Biographies of the Authors xiii

Scientific Biographies of the Co-Authors to Chapter 16 xvii

Preface xix

Part I General 1

1 Introduction 3
Wolfram Oelßner

Reference 6

2 Carbon Dioxide in General 7
Detlev Möller, Manfred Decker, Jens Zosel, and Wolfram Oelßner

2.1 Chemical and Physical Properties of Carbon Dioxide 7

2.1.1 Chemical Properties of Carbon Dioxide 7

2.1.1.1 Chemical Properties 7

2.1.1.2 Industrial Use of Carbon Dioxide 8

2.1.2 Physical Properties of Carbon Dioxide 9

2.1.2.1 Mechanical Properties 9

2.1.2.2 Thermally Related Properties 10

2.1.2.3 Electrical Properties 12

2.1.2.4 Optical Properties 12

2.2 The Carbon Cycle 13

2.2.1 Sources of Carbon on Earth 13

2.2.2 Carbon Pools and Global Cycling 18

2.2.3 Carbon Budget 23

2.2.4 Subsurface CO2 Monitoring 28

2.3 Anthropogenic CO2 29

2.3.1 Biomass Burning 30

2.3.2 Land-Use Change and Deforestation 33

2.3.3 Fossil Fuel Burning 35

References 37

Part II Principles of Carbon Dioxide Sensors and Measuring Methods 45

3 Analytical Methods for the Detection of Gaseous CO2 47
Gerald Gerlach, Armin Lambrecht, and Wolfram Oelßner

3.1 Spectroscopy 47

3.1.1 Molecular Vibrations of Molecules, in Particular CO2 48

3.1.2 Characteristic Wave Numbers and Wavelengths of Gases 49

3.1.3 Absorption of Radiation in Molecules 52

3.1.4 Molecular Absorption in the Infrared Range 52

3.1.5 Line Shapes for Molecular Absorption in the Infrared Range 53

3.1.5.1 Line Broadening 54

3.1.5.2 High-Resolution Transmission Molecular Absorption Database 54

3.1.5.3 Lorentzian Line Shape 54

3.1.5.4 Gaussian Line Shape 55

3.1.5.5 Applicability of Line Shapes 55

3.1.5.6 Spectral Resolution of Individual Ro-vibrational Absorption Lines 55

3.1.6 CO2 Absorption in the Infrared Range 55

3.1.7 Laser Spectroscopy 58

3.1.7.1 Basic Measurement Concepts 60

3.1.7.2 Properties of Lasers Suitable for TLAS 61

3.1.7.3 Laser Absorption Spectroscopy Measurement Schemes 62

3.2 Gas Chromatography 67

3.2.1 Functional Principle 67

3.2.2 Classification of Chromatographic Methods 69

3.2.3 Gas Chromatography Instrumental Components 69

3.2.3.1 Autosampler 70

3.2.3.2 Sample Injection Port 70

3.2.3.3 Column 71

3.2.3.4 Carrier Gas 72

3.2.3.5 Stationary Phase 72

3.2.3.6 Detectors 75

3.2.3.7 Data Analysis 75

3.2.4 Gas Chromatography of Gaseous CO2 76

3.3 Analytical Determination of CO2 in Liquids 76

References 81

4 Electrochemical CO2 Sensors with Liquid or Pasty Electrolyte 87
Manfred Decker, Wolfram Oelßner, and Jens Zosel

4.1 Severinghaus-Type Membrane-Covered Carbon Dioxide Sensors 87

4.1.1 The Severinghaus Principle 87

4.1.1.1 Stow’s Electrode with [Na+]=0 mol l−1 92

4.1.1.2 Severinghaus Electrode with [Na+]>0.001 mol l−1 93

4.1.2 Sensor Electrolyte 95

4.1.3 Membrane Materials 96

4.1.4 Temperature Dependence 98

4.1.5 Response Behaviour 98

4.1.6 Calibration of Electrochemical CO2 Sensors 102

4.2 Coulometric and Amperometric CO2 Sensors 103

4.2.1 Operation Principle 103

4.2.2 Ir O2 Electrode 105

4.2.3 Amperometric CO2 Sensors 105

4.3 Conductometric CO2 Sensors 108

4.4 Quinhydrone CO2 Electrode 110

References 111

5 Potentiometric CO2 Sensors with Solid Electrolyte 117
Hans Ulrich Guth

5.1 Indirect Measurement of CO2 in Hot Water Gas 117

5.2 Direct CO2 Measurement with Solid Electrolyte Cells 119

5.2.1 Functional Principles of Solid Electrolyte CO2 Cells 119

5.2.2 General Setup 123

5.2.2.1 Pellet Sensors 123

5.2.2.2 Thick-Film Sensors 123

5.3 Solid-State Sensors Based on Changes in Capacity and Resistivity 129

References 130

6 Opto-Chemical CO2 Sensors 133
Gerald Gerlach and Wolfram Oelßner

6.1 Liquid Reagent-Based Opto-Chemical CO2 Sensors 133

6.2 CO2 Detector Tubes 136

6.3 Fibre-Optic Fluorescence CO2 Sensors 141

6.3.1 Fibre-Optic Sensors 141

6.3.1.1 Light Propagation in Optic Fibres 141

6.3.1.2 General Set-Up and Basic Components 142

6.3.1.3 Optical Fibres 142

6.3.1.4 Interaction Between Light and External Measurand 144

6.3.1.5 Advantages of Fibre-Optic Sensors 146

6.3.2 Fibre-Optic Fluorescence Gas Sensors 146

6.3.2.1 General 146

6.3.2.2 Fluorescent Sensor Dyes for CO2 Detection 146

6.3.2.3 Fibre-Optic CO2 Sensors 148

6.3.2.4 Commercial Fibre-Optic CO2 Sensor Solutions 150

References 152

7 Non-dispersive Infrared Sensors 157
Gerald Gerlach

7.1 Basic Principle and General Set-Up 157

7.1.1 General Set-Up 157

7.1.2 Gas Selectivity 159

7.2 NDIR Components 159

7.2.1 Infrared Detectors 159

7.2.1.1 Pyroelectric IR Sensors 160

7.2.1.2 Thermopiles 164

7.2.1.3 Comparison of Detectors 165

7.2.2 Wavelength Selection by IR Filters 167

7.2.2.1 IR Filters 167

7.2.2.2 Fabry–Pérot Filters 168

7.2.3 IR Radiation Sources 171

7.2.3.1 Requirements 171

7.2.3.2 IR Radiation Source Selection 171

7.2.3.3 Thermal Emitters 173

7.2.4 Gas Sensors for Measuring CO2 in Gas Mixtures 174

7.3 NDIR Sensors 175

7.3.1 Commercial NDIR Sensors 175

7.3.2 Application for Very Small Concentrations and for Liquid Samples 177

7.3.2.1 Pre-Concentrators for Low Gas Concentrations 177

7.3.2.2 Measurement of Dissolved CO2 in Liquids by Using Permeation Methods 177

7.4 IR Spectrometers 178

7.4.1 Types of IR Spectrometers 178

7.4.2 Applications 181

7.5 IR Imaging for CO2 Detection 182

References 184

8 Photoacoustic Detection of CO2 191
Frank Kühnemann

8.1 Photoacoustic Effect and Photoacoustic Gas Detection 191

8.1.1 Photoacoustic Cell as Gas-Specific Radiation Detector 192

8.1.2 Photoacoustic Detection in the Sample Cell 193

8.2 Photoacoustic Signal Generation 194

8.3 Photoacoustic Gas Analysis with Thermal Sources 197

8.3.1 Photoacoustic Cell as Gas-Specific Radiation Detector 197

8.3.2 Miniaturized PA Detection Systems 199

8.3.3 Photoacoustic Detection in the Gas Sample 200

8.4 Laser-Based Photoacoustic Trace Gas Detection 202

8.4.1 General Overview 202

8.4.2 Resonant Photoacoustic Cell Design 203

8.4.3 Acoustic Detectors 204

8.4.3.1 Quartz-Enhanced Photoacoustic Spectroscopy 205

8.4.3.2 Cantilever-Enhanced Laser-PAS 208

8.4.4 Detection Limits of CO2 Gas Analysis with Laser-Based PAS 209

References 210

9 Acoustic CO2 Sensors 215
Gerald Gerlach

9.1 Basic Principles of Resonant Sensors 216

9.1.1 General Set-Up 216

9.1.2 Piezoelectric Resonators 218

9.1.2.1 Circuit Model 218

9.1.2.2 Resonance Frequencies 220

9.1.2.3 Types of Piezoelectric Resonant Sensors 221

9.2 Quartz Crystal Microbalance Sensors 222

9.2.1 Quartz as Resonator Material 222

9.2.2 Thickness Shear Mode Sensors 223

9.2.2.1 Vibration Modes 223

9.2.2.2 Sensitivity 225

9.2.2.3 Commercial QCM Sensors 226

9.2.3 CO2-Sensitive Coating 226

9.2.4 Other Applications of CO2-Sensitive QCMs 226

9.3 Surface Acoustic Wave Sensors 228

9.3.1 Operation Principle 228

9.3.1.1 Excitation of Surface Acoustic Waves 228

9.3.1.2 Operation Modes of SAW Sensors 229

9.3.2 SAW Sensor Materials 231

9.3.3 SAW Devices 232

9.3.4 CO2-Sensitive SAW Sensors 235

9.4 Ultrasonic CO2 Sensors 235

9.4.1 Operation Principle 235

9.4.1.1 Velocity of Sound in Gases 235

9.4.1.2 Basic Set-Up 239

9.4.2 Ultrasonic Sensors for CO2 Detection 240

References 241

10 Miscellaneous Approaches 247
Wolfram Oelßner, Manfred Decker, and Gerald Gerlach

10.1 Hydrogel-Based CO2 Sensors with Pressure Transducer 247

10.2 Miniaturized and ISFET-Based CO2 Sensors 250

10.3 Thermal Conductivity CO2 Detectors 253

10.4 Membrane-Based CO2 Sensors with Pressure Measurement 256

References 258

11 Survey and Comparison of Methods 263
Hans Ulrich Guth, Gerald Gerlach, and Wolfram Oelßner

Part III Applications 273

12 Environmental CO2 Monitoring 275
Detlev Möller and Wolfram Oelßner

12.1 CO2 and Climate Change 275

12.1.1 The Carbon Dioxide Environmental Problem 275

12.1.2 Rise of Atmospheric CO2 276

12.2 Atmospheric CO2 279

12.2.1 Pre-industrial CO2 Level 279

12.2.2 Pre-industrial CO2 Level Derived from Ice Core Data 283

12.2.3 CO2 Increase in the Twentieth Century 286

12.2.3.1 Mauna Loa CO2 Record 286

12.2.3.2 Latitudinal Variation 289

12.2.3.3 Timely Variations 290

12.2.3.4 The City Dome CO2 291

12.2.4 Atmospheric CO2 Residence Time 292

12.2.5 Atmospheric CO2 Chemistry 294

12.3 Oceanic and Water CO2 and Carbonate Content 297

12.3.1 CO2 Water Chemistry 297

12.3.2 Total Dissolved Carbon (DIC) 301

12.3.3 Changing Seawater Carbonate 303

12.3.4 Oceanic CO2 Measurements 307

12.3.5 CO2 Measurements in Waters and Boreholes 312

References 317

13 CO2 Safety Control 329
Wolfram Oelßner

13.1 Limit Values for CO2 Concentrations at Workplaces 329

13.2 CO2 in Buildings and Workplaces 330

13.2.1 Air Quality with Respect to CO2 330

13.2.2 Sick-Building Syndrome 332

13.2.3 Dangerous Areas 334

13.3 CO2 Warning Devices 336

13.3.1 CO2 Detector and Dosimeter Tubes 336

13.3.2 Electrochemical CO2 Sensors 337

13.3.3 NDIR CO2 Sensors 338

13.3.3.1 Properties 338

13.3.3.2 Calibration of NDIR CO2 Measuring Devices 341

13.3.3.3 Pressure Dependence 341

13.3.3.4 Response Time 342

13.3.4 Solid Electrolyte CO2 Sensors 342

13.3.5 Gas Chromatograph with Thermal Conductivity Detector 343

References 343

14 CO2 Measurement in Biotechnology and Industrial Processes 349
Wolfram Oelßner and Jens Zosel

14.1 Beverage and Food Industry 349

14.1.1 Sensor Principles 350

14.1.1.1 Electrochemical Sensors 350

14.1.1.2 p/T (Pressure/Temperature) Sensors 350

14.1.1.3 NIR-Based In-Line CO2 Measurement 351

14.1.1.4 Thermal Conductivity Sensors 351

14.1.1.5 Other Sensor Principles 351

14.1.2 Application Examples 352

14.2 Bioreactors 356

14.3 Biogas Plants 359

References 362

15 CO2 Measurements in Biology 367
Wolfram Oelßner

15.1 Aquatic Animals 367

15.1.1 Fish 367

15.1.1.1 Influence of CO2 Concentration on Fish 367

15.1.1.2 Methods to Determine CO2 Concentrations 368

15.1.1.3 Behaviour of Fish in Regions with Increased CO2 Concentration 369

15.1.2 Mussels 372

15.1.2.1 Respiratory Quotient 372

15.1.2.2 Respiratory Exchange 373

15.2 Insects 376

15.2.1 CO2 Measurements on Butterfly Pupae 376

15.2.2 CO2 Measurements on Honeybees 379

15.3 Plants 381

References 385

16 CO2 Sensing in Medicine 391
Gerald Urban, Josef Guttmann, Jochen Kieninger, Andreas Weltin, Jürgen Wöllenstein, and Jens Zosel

16.1 Introduction 391

16.2 Physiological Background of CO2 Sensing 392

16.3 Measuring Principles 393

16.3.1 Electrochemical Principle: Severinghaus Method 393

16.3.2 Optical Principles 394

16.3.3 New and Unconventional CO2 Measuring Principles 395

16.4 Clinical Applications 395

16.4.1 Blood Gas Analysing Devices 395

16.4.2 Monitoring Devices 396

16.4.2.1 Transcutaneous pCO2 Measurement (tcpCO2) 396

16.4.2.2 Blood Monitoring Devices: Direct Venous or Arterial Monitoring of Blood Gases 398

16.5 Comparison of Methods and Conclusions 399

16.6 CO2 Analysis in Human Breath 399

16.6.1 Methods for CO2 Detection in Breath 400

16.6.1.1 Qualitative and Semi-Quantitative Detection 400

16.6.1.2 Quantitative Detection by Non-Dispersive Infrared Absorption 401

16.7 CO2 Measurements on Baby Mattresses 405

References 408

Index 415

Sobre o autor

Gerald Gerlach studied at the TU Dresden and finished with a Ph D on ‘Integrated piezoresistive pressure sensors for small pressure ranges’ in 1987. Since 1993 he is professor for Microtechnology at the electrical engineering department of the TU Dresden. He was visiting profossor at the UC in Los Angeles. From 1994-2000 he was Vice Dean and Dean of the EE Department at TU Dresden, respectively. Since 2006, he is associate editor of the IEEE sensors journal.

Ulrich Guth was director of the Kurt-Schwabe Institute in Meinsberg from 1999 – 2010.

Wolfram Oe?ler studied at the TU Dresden and finished with a Ph D in 1968. From 1963-2003, he was head of the electrochemical sensors and measuring instrumentation department at Meinsberg Kurt-Schwabe research institute. Since 1995, he is private lecturer for physical-chemical measuring technique and corrosion research at TU Dresden and was lecturer on electrochemical sensors at University of Applied Sciences in Mittweida.

Compre este e-book e ganhe mais 1 GRÁTIS!
Língua Inglês ● Formato PDF ● ISBN 9783527688296 ● Tamanho do arquivo 14.8 MB ● Editor Ulrich Guth & Wolfram Oelßner ● Editora Wiley-VCH Verlag GmbH & Co. KGaA ● País DE ● Publicado 2019 ● Edição 1 ● Carregável 24 meses ● Moeda EUR ● ID 6952069 ● Proteção contra cópia Adobe DRM
Requer um leitor de ebook capaz de DRM

Mais ebooks do mesmo autor(es) / Editor

18.641 Ebooks nesta categoria