Albert C. J. Luo 
Two-dimensional Product-cubic Systems, Vol.II [PDF ebook] 
Product-quadratic Vector Fields

Ajutor

This book, the sixth of 15 related monographs, discusses singularity and networks of equilibriums and 1-diemsnional flows in product quadratic and cubic systems. The author explains how, in the networks, equilibriums have source, sink and saddles with counter-clockwise and clockwise centers and positive and negative saddles, and the 1-dimensional flows includes source and sink flows, parabola flows with hyperbolic and hyperbolic-secant flows. He further describes how the singular equilibriums are saddle-source (sink) and parabola-saddles for the appearing bifurcations, and the 1-dimensional singular flows are the hyperbolic-to-hyperbolic-secant flows and inflection source (sink) flows for 1-dimensional flow appearing bifurcations, and the switching bifurcations are based on the infinite-equilibriums, including inflection-source (sink), parabola-source (sink), up-down and down-up upper-saddle (lower-saddle), up-down (down-up) sink-to-source and source-to-sink, hyperbolic and hyperbolic-secant saddles. The diagonal-inflection upper-saddle and lower-saddle infinite-equilibriums are for the double switching bifurcations. The networks of hyperbolic flows with connected saddle, source and center are presented, and the networks of the hyperbolic flows with paralleled saddle and center are also illustrated. Readers will learn new concepts, theory, phenomena, and analysis techniques.


  • Product-quadratic and product cubic systems

  • Self-linear and crossing-quadratic product vector fields

  • Self-quadratic and crossing-linear product vector fields

  • Hybrid networks of equilibriums and 1-dimensional flows

  • Up-down and down-up saddle infinite-equilibriums

  • Up-down and down-up sink-to-source infinite-equilibriums

  • Inflection-source (sink) Infinite-equilibriums 

  • Diagonal inflection saddle infinite-equilibriums

  • Infinite-equilibrium switching bifurcations

€171.19
Metode de plata

Cuprins

Constant and Crossing-cubic Vector Fields.- Self-linear and Crossing-cubic Vector Fields.- Self-quadratic and Crossing-cubic Vector Fields.

Despre autor

Dr. Albert C. J. Luo is a Distinguished Research Professor at the Southern Illinois University Edwardsville, in Edwardsville, IL, USA. Dr. Luo worked on Nonlinear Mechanics, Nonlinear Dynamics, and Applied Mathematics. He proposed and systematically developed: (i) the discontinuous dynamical system theory, (ii) analytical solutions for periodic motions in nonlinear dynamical systems, (iii) the theory of dynamical system synchronization, (iv) the accurate theory of nonlinear deformable-body dynamics, (v) new theories for stability and bifurcations of nonlinear dynamical systems. He discovered new phenomena in nonlinear dynamical systems. His methods and theories can help understanding and solving the Hilbert sixteenth problems and other nonlinear physics problems. The main results were scattered in 45 monographs in Springer, Wiley, Elsevier, and World Scientific, over 200 prestigious journal papers, and over 150 peer-reviewed conference papers.

Cumpărați această carte electronică și primiți încă 1 GRATUIT!
Limba Engleză ● Format PDF ● Pagini 292 ● ISBN 9783031571169 ● Mărime fișier 9.8 MB ● Vârstă 02-99 ani ● Editura Springer Nature Switzerland ● Oraș Cham ● Țară CH ● Publicat 2024 ● Descărcabil 24 luni ● Valută EUR ● ID 10029610 ● Protecție împotriva copiilor DRM social

Mai multe cărți electronice de la același autor (i) / Editor

5.127 Ebooks din această categorie