RF and Microwave Transmitter Design is unique in its coverage of both historical transmitter design and cutting edge technologies. This text explores the results of well-known and new theoretical analyses, while informing readers of modern radio transmitters’ pracitcal designs and their components. Jam-packed with information, this book broadcasts and streamlines the author’s considerable experience in RF and microwave design and development.
Cuprins
Preface xiii
Introduction 1
References 6
1 Passive Elements and Circuit Theory 9
1.1 Immittance Two-Port Network Parameters 9
1.2 Scattering Parameters 13
1.3 Interconnections of Two-Port Networks 17
1.4 Practical Two-Port Networks 20
1.4.1 Single-Element Networks 20
1.4.2 π- and T -Type Networks 21
1.5 Three-Port Network with Common Terminal 24
1.6 Lumped Elements 26
1.6.1 Inductors 26
1.6.2 Capacitors 29
1.7 Transmission Line 31
1.8 Types of Transmission Lines 35
1.8.1 Coaxial Line 35
1.8.2 Stripline 36
1.8.3 Microstrip Line 39
1.8.4 Slotline 41
1.8.5 Coplanar Waveguide 42
1.9 Noise 44
1.9.1 Noise Sources 44
1.9.2 Noise Figure 46
1.9.3 Flicker Noise 53
References 53
2 Active Devices and Modeling 57
2.1 Diodes 57
2.1.1 Operation Principle 57
2.1.2 Schottky Diodes 59
2.1.3 p–i–n Diodes 61
2.1.4 Zener Diodes 62
2.2 Varactors 63
2.2.1 Varactor Modeling 63
2.2.2 MOS Varactor 65
2.3 MOSFETs 70
2.3.1 Small-Signal Equivalent Circuit 70
2.3.2 Nonlinear I–V Models 73
2.3.3 Nonlinear C–V Models 75
2.3.4 Charge Conservation 78
2.3.5 Gate–Source Resistance 79
2.3.6 Temperature Dependence 79
2.3.7 Noise Model 81
2.4 MESFETs and HEMTs 83
2.4.1 Small-Signal Equivalent Circuit 83
2.4.2 Determination of Equivalent Circuit Elements 85
2.4.3 Curtice Quadratic Nonlinear Model 88
2.4.4 Parker–Skellern Nonlinear Model 89
2.4.5 Chalmers (Angelov) Nonlinear Model 91
2.4.6 IAF (Berroth) Nonlinear Model 93
2.4.7 Noise Model 94
2.5 BJTs and HBTs 97
2.5.1 Small-Signal Equivalent Circuit 97
2.5.2 Determination of Equivalent Circuit Elements 98
2.5.3 Equivalence of Intrinsic π- and T -Type Topologies 100
2.5.4 Nonlinear Bipolar Device Modeling 102
2.5.5 Noise Model 105
References 107
3 Impedance Matching 113
3.1 Main Principles 113
3.2 Smith Chart 116
3.3 Matching with Lumped Elements 120
3.3.1 Analytic Design Technique 120
3.3.2 Bipolar UHF Power Amplifier 131
3.3.3 MOSFET VHF High-Power Amplifier 135
3.4 Matching with Transmission Lines 138
3.4.1 Analytic Design Technique 138
3.4.2 Equivalence Between Circuits with Lumped and Distributed Parameters 144
3.4.3 Narrowband Microwave Power Amplifier 147
3.4.4 Broadband UHF High-Power Amplifier 149
3.5 Matching Networks with Mixed Lumped and Distributed Elements 151
References 153
4 Power Transformers, Combiners, and Couplers 155
4.1 Basic Properties 155
4.1.1 Three-Port Networks 155
4.1.2 Four-Port Networks 156
4.2 Transmission-Line Transformers and Combiners 158
4.3 Baluns 168
4.4 Wilkinson Power Dividers/Combiners 174
4.5 Microwave Hybrids 182
4.6 Coupled-Line Directional Couplers 192
References 197
5 Filters 201
5.1 Types of Filters 201
5.2 Filter Design Using Image Parameter Method 205
5.2.1 Constant-k Filter Sections 205
5.2.2 m-Derived Filter Sections 207
5.3 Filter Design Using Insertion Loss Method 210
5.3.1 Maximally Flat Low-Pass Filter 210
5.3.2 Equal-Ripple Low-Pass Filter 213
5.3.3 Elliptic Function Low-Pass Filter 216
5.3.4 Maximally Flat Group-Delay Low-Pass Filter 219
5.4 Bandpass and Bandstop Transformation 222
5.5 Transmission-Line Low-Pass Filter Implementation 225
5.5.1 Richards’s Transformation 225
5.5.2 Kuroda Identities 226
5.5.3 Design Example 228
5.6 Coupled-Line Filters 228
5.6.1 Impedance and Admittance Inverters 228
5.6.2 Coupled-Line Section 231
5.6.3 Parallel-Coupled Bandpass Filters Using Half-Wavelength Resonators 234
5.6.4 Interdigital, Combline, and Hairpin Bandpass Filters 236
5.6.5 Microstrip Filters with Unequal Phase Velocities 239
5.6.6 Bandpass and Bandstop Filters Using Quarter-Wavelength Resonators 241
5.7 SAW and BAW Filters 243
References 250
6 Modulation and Modulators 255
6.1 Amplitude Modulation 255
6.1.1 Basic Principle 255
6.1.2 Amplitude Modulators 259
6.2 Single-Sideband Modulation 262
6.2.1 Double-Sideband Modulation 262
6.2.2 Single-Sideband Generation 265
6.2.3 Single-Sideband Modulator 266
6.3 Frequency Modulation 267
6.3.1 Basic Principle 268
6.3.2 Frequency Modulators 273
6.4 Phase Modulation 278
6.5 Digital Modulation 283
6.5.1 Amplitude Shift Keying 284
6.5.2 Frequency Shift Keying 287
6.5.3 Phase Shift Keying 289
6.5.4 Minimum Shift Keying 296
6.5.5 Quadrature Amplitude Modulation 299
6.5.6 Pulse Code Modulation 300
6.6 Class-S Modulator 302
6.7 Multiple Access Techniques 304
6.7.1 Time and Frequency Division Multiplexing 304
6.7.2 Frequency Division Multiple Access 305
6.7.3 Time Division Multiple Access 305
6.7.4 Code Division Multiple Access 306
References 308
7 Mixers and Multipliers 311
7.1 Basic Theory 311
7.2 Single-Diode Mixers 313
7.3 Balanced Diode Mixers 318
7.3.1 Single-Balanced Mixers 318
7.3.2 Double-Balanced Mixers 321
7.4 Transistor Mixers 326
7.5 Dual-Gate FET Mixer 329
7.6 Balanced Transistor Mixers 331
7.6.1 Single-Balanced Mixers 331
7.6.2 Double-Balanced Mixers 334
7.7 Frequency Multipliers 338
References 344
8 Oscillators 347
8.1 Oscillator Operation Principles 347
8.1.1 Steady-State Operation Mode 347
8.1.2 Start-Up Conditions 349
8.2 Oscillator Configurations and Historical Aspect 353
8.3 Self-Bias Condition 358
8.4 Parallel Feedback Oscillator 362
8.5 Series Feedback Oscillator 365
8.6 Push–Push Oscillators 368
8.7 Stability of Self-Oscillations 372
8.8 Optimum Design Techniques 376
8.8.1 Empirical Approach 376
8.8.2 Analytic Approach 379
8.9 Noise in Oscillators 385
8.9.1 Parallel Feedback Oscillator 386
8.9.2 Negative Resistance Oscillator 392
8.9.3 Colpitts Oscillator 394
8.9.4 Impulse Response Model 397
8.10 Voltage-Controlled Oscillators 407
8.11 Crystal Oscillators 417
8.12 Dielectric Resonator Oscillators 423
References 428
9 Phase-Locked Loops 433
9.1 Basic Loop Structure 433
9.2 Analog Phase-Locked Loops 435
9.3 Charge-Pump Phase-Locked Loops 439
9.4 Digital Phase-Locked Loops 441
9.5 Loop Components 444
9.5.1 Phase Detector 444
9.5.2 Loop Filter 449
9.5.3 Frequency Divider 454
9.5.4 Voltage-Controlled Oscillator 457
9.6 Loop Parameters 461
9.6.1 Lock Range 461
9.6.2 Stability 462
9.6.3 Transient Response 463
9.6.4 Noise 465
9.7 Phase Modulation Using Phase-Locked Loops 466
9.8 Frequency Synthesizers 469
9.8.1 Direct Analog Synthesizers 469
9.8.2 Integer-N Synthesizers Using PLL 469
9.8.3 Fractional-N Synthesizers Using PLL 471
9.8.4 Direct Digital Synthesizers 473
References 474
10 Power Amplifier Design Fundamentals 477
10.1 Power Gain and Stability 477
10.2 Basic Classes of Operation: A, AB, B, and C 487
10.3 Linearity 496
10.4 Nonlinear Effect of Collector Capacitance 503
10.5 DC Biasing 506
10.6 Push–Pull Power Amplifiers 515
10.7 Broadband Power Amplifiers 522
10.8 Distributed Power Amplifiers 537
10.9 Harmonic Tuning Using Load–Pull Techniques 543
10.10 Thermal Characteristics 549
References 552
11 High-Efficiency Power Amplifiers 557
11.1 Class D 557
11.1.1 Voltage-Switching Configurations 557
11.1.2 Current-Switching Configurations 561
11.1.3 Drive and Transition Time 564
11.2 Class F 567
11.2.1 Idealized Class F Mode 569
11.2.2 Class F with Quarterwave Transmission Line 572
11.2.3 Effect of Saturation Resistance 575
11.2.4 Load Networks with Lumped and Distributed Parameters 577
11.3 Inverse Class F 581
11.3.1 Idealized Inverse Class F Mode 583
11.3.2 Inverse Class F with Quarterwave Transmission Line 585
11.3.3 Load Networks with Lumped and Distributed Parameters 586
11.4 Class E with Shunt Capacitance 589
11.4.1 Optimum Load Network Parameters 590
11.4.2 Saturation Resistance and Switching Time 595
11.4.3 Load Network with Transmission Lines 599
11.5 Class E with Finite dc-Feed Inductance 601
11.5.1 General Analysis and Optimum Circuit Parameters 601
11.5.2 Parallel-Circuit Class E 605
11.5.3 Broadband Class E 610
11.5.4 Power Gain 613
11.6 Class E with Quarterwave Transmission Line 615
11.6.1 General Analysis and Optimum Circuit Parameters 615
11.6.2 Load Network with Zero Series Reactance 622
11.6.3 Matching Circuits with Lumped and Distributed Parameters 625
11.7 Class FE 628
11.8 CAD Design Example: 1.75 GHz HBT Class E MMIC Power Amplifier 638
References 653
12 Linearization and Efficiency Enhancement Techniques 657
12.1 Feedforward Amplifier Architecture 657
12.2 Cross Cancellation Technique 663
12.3 Reflect Forward Linearization Amplifier 665
12.4 Predistortion Linearization 666
12.5 Feedback Linearization 672
12.6 Doherty Power Amplifier Architectures 678
12.7 Outphasing Power Amplifiers 685
12.8 Envelope Tracking 691
12.9 Switched Multipath Power Amplifiers 695
12.10 Kahn EER Technique and Digital Power Amplification 702
12.10.1 Envelope Elimination and Restoration 702
12.10.2 Pulse-Width Carrier Modulation 704
12.10.3 Class S Amplifier 706
12.10.4 Digital RF Amplification 706
References 709
13 Control Circuits 717
13.1 Power Detector and VSWR Protection 717
13.2 Switches 722
13.3 Phase Shifters 728
13.3.1 Diode Phase Shifters 729
13.3.2 Schiffman 90◦ Phase Shifter 736
13.3.3 MESFET Phase Shifters 739
13.4 Attenuators 741
13.5 Variable Gain Amplifiers 746
13.6 Limiters 750
References 753
14 Transmitter Architectures 759
14.1 Amplitude-Modulated Transmitters 759
14.1.1 Collector Modulation 760
14.1.2 Base Modulation 762
14.1.3 Low-Level Modulation 764
14.1.4 Amplitude Keying 765
14.2 Single-Sideband Transmitters 766
14.3 Frequency-Modulated Transmitters 768
14.4 Television Transmitters 772
14.5 Wireless Communication Transmitters 776
14.6 Radar Transmitters 782
14.6.1 Phased-Array Radars 783
14.6.2 Automotive Radars 786
14.6.3 Electronic Warfare 791
14.7 Satellite Transmitters 794
14.8 Ultra-Wideband Communication Transmitters 797
References 802
Index 809
Despre autor
Andrei Grebennikov is a Member of the Technical Staff at Bell Laboratories, Alcatel-Lucent, in Ireland. His responsibilities include the design and development of advanced highly efficient and linear transmitter architectures for base station cellular applications. He has taught at the University of Linz in Austria, the Institute of Microelectronics in Singapore, and the Moscow Technical University of Communications and Informatics. He has written over eighty scientific papers, has written four books, and is a Senior Member of IEEE.