Das E-Book Gibbs Measures and Phase Transitions wird angeboten von De Gruyter und wurde mit folgenden Begriffen kategorisiert:
Phase Transition, Statistical Mechanics, Gibbs Measures, Markov Chains, Gaussian Fields
Cuprins
Frontmatter – Preface – Contents – Introduction – Part I. General theory and basic examples – Chapter 1 Specifications of random fields – Chapter 2 Gibbsian specifications – Chapter 3 Finite state Markov chains as Gibbs measures – Chapter 4 The existence problem – Chapter 5 Specifications with symmetries – Chapter 6 Three examples of symmetry breaking – Chapter 7 Extreme Gibbs measures – Chapter 8 Uniqueness – Chapter 9 Absence of symmetry breaking. Non-existence – Part II. Markov chains and Gauss fields as Gibbs measures – Chapter 10 Markov fields on the integers I – Chapter 11 Markov fields on the integers II – Chapter 12 Markov fields on trees – Chapter 13 Gaussian fields – Part III. Shift-invariant Gibbs measures – Chapter 14 Ergodicity – Chapter 15 The specific free energy and its minimization – Chapter 16 Convex geometry and the phase diagram – Part IV. Phase transitions in reflection positive models – Chapter 17 Reflection positivity – Chapter 18 Low energy oceans and discrete symmetry breaking – Chapter 19 Phase transitions without symmetry breaking – Chapter 20 Continuous symmetry breaking in N-vector models – Bibliographical Notes – Further Progress – References – References to the Second Edition – List of Symbols – Index
Despre autor
Hans-Otto Georgii, Ludwig-Maximilians-Universität Munich, Germany.