Kang Feng & Mengzhao Qin 
Symplectic Geometric Algorithms for Hamiltonian Systems [PDF ebook] 

Ajutor

‘Symplectic Geometric Algorithms for Hamiltonian Systems’ will be useful not only for numerical analysts, but also for those in theoretical physics, computational chemistry, celestial mechanics, etc. The book generalizes and develops the generating function and Hamilton-Jacobi equation theory from the perspective of the symplectic geometry and symplectic algebra. It will be a useful resource for engineers and scientists in the fields of quantum theory, astrophysics, atomic and molecular dynamics, climate prediction, oil exploration, etc. Therefore a systematic research and development of numerical methodology for Hamiltonian systems is well motivated. Were it successful, it would imply wide-ranging applications.

€203.29
Metode de plata

Cuprins

Preliminaries of Differentiable Manifolds.- Symplectic Algebra and Geometry Preliminaries.- Hamiltonian Mechanics and Symplectic Geometry.- Symplectic Difference Schemes for Hamiltonian Systems.- The Generating Function Method.- The Calculus of Generating Functions and Formal Energy.- Symplectic Runge-Kutta Methods.- Composition Scheme.- Formal Power Series and B-Series.- Volume-Preserving Methods for Source-Free Systems.- Contact Algorithms for Contact Dynamical Systems.- Poisson Bracket and Lie-Poisson Schemes.- KAM Theorem of Symplectic Algorithms.- Lee-Variational Integrator.- Structure Preserving Schemes for Birkhoff Systems.- Multisymplectic and Variational Integrators.

Cumpărați această carte electronică și primiți încă 1 GRATUIT!
Limba Engleză ● Format PDF ● Pagini 676 ● ISBN 9783642017773 ● Mărime fișier 6.4 MB ● Editura Springer Berlin ● Oraș Heidelberg ● Țară DE ● Publicat 2010 ● Descărcabil 24 luni ● Valută EUR ● ID 5238581 ● Protecție împotriva copiilor DRM social

Mai multe cărți electronice de la același autor (i) / Editor

958 Ebooks din această categorie

Franz Rothe: A Course in Old and New Geometry : Volume V
The present fifth volume  recalls Hilbert’s axioms from the Foundations of 
') jQuery('#virelinsocial').html('
'); jQuery('.virelinsocial-link').css('display','block').css('margin','0px').css('margin-bottom','5px'); jQuery('#virelinsocial').show(); }); // end of document ready // END wait until jQuery is available } }, 30); })();