This book addresses the application of process intensification to sustainable energy production, combining two very topical subject areas. Due to the increasing process of petroleum, sustainable energy production technologies must be developed, for example bioenergy, blue energy, chemical looping combustion, concepts for CO2 capture etc. Process intensification offers significant competitive advantages, because it provides more efficient processes, leading to outstanding cost reduction, increased productivity and more environment-friendly processes.
Cuprins
Preface xi
List of Contributors xiii
1. Introduction 1
Fausto Gallucci and Martin van Sint Annaland
References 6
2. Cryogenic CO2 Capture 7
M. van Sint Annaland, M. J. Tuinier and F. Gallucci
2.1 Introduction – CCS and Cryogenic Systems 7
2.1.1 Carbon Capture and Storage 8
2.1.2 Cryogenic separation 10
2.2 Cryogenic Packed Bed Process Concept 11
2.2.1 Capture Step 11
2.2.2 CO2 Recovery Step 12
2.2.3 H2O Recovery and Cooling Step 13
2.3 Detailed Numerical Model 13
2.3.1 Model Description 13
2.3.2 Simulation Results 15
2.3.3 Simplified Model: Sharp Front Approach 16
2.3.4 Model Description 16
2.3.5 Process Analysis 22
2.3.6 Initial Bed Temperature 24
2.3.7 CO2 Inlet Concentration 24
2.3.8 Inlet Temperature 25
2.3.9 Bed Properties 25
2.4 Small-Scale Demonstration (Proof of Principle) 25
2.4.1 Results of the Proof of Principle 26
2.5 Experimental Demonstration of the Novel Process Concept in a Pilot-Scale Set-Up 31
2.5.1 Experimental Procedure 32
2.5.2 Experimental Results 33
2.5.3 Simulations for the Proof of Concept 36
2.5.4 Radial Temperature Profiles 36
2.5.5 Influence of the Wall 38
2.6 Techno-Economic Evaluation 39
2.6.1 Process Evaluation 40
2.6.2 Parametric Study 41
2.6.3 Comparison with Absorption and Membrane Technology 45
2.7 Conclusions 49
2.8 Note for the Reader 49
List of symbols 50
Greek letters 50
Subscripts 51
References 51
3. Novel Pre-Combustion Power Production: Membrane Reactors 53
F. Gallucci and M. van Sint Annaland
3.1 Introduction 53
3.2 The Membrane Reactor Concept 55
3.3 Types of Reactors 57
3.3.1 Packed Bed Membrane Reactors 58
3.3.2 Fluidized Bed Membrane Reactors 65
3.3.3 Membrane Micro-Reactors 72
3.4 Conclusions 74
3.5 Note for the reader 75
References 75
4. Oxy Fuel Combustion Power Production Using High Temperature O2 Membranes 81
Vesna Middelkoop and Bart Michielsen
4.1 Introduction 81
4.2 MIEC Perovskites as Oxygen Separation Membrane Materials for the Oxy-fuel Combustion Power Production 83
4.3 MIEC Membrane Fabrication 85
4.4 High-temperature ceramic oxygen separation membrane system on laboratory scale 87
4.4.1 Oxygen permeation measurements and sealing dense MIEC ceramic membranes 87
4.4.2 Bax Sr1-x Co1-x Fey O3- and Lax Sr1-x Co1-y Fey O3- Membranes 89
4.4.3 Chemical Stability of Perovskite Membranes Under Flue-Gas Conditions 96
4.4.4 CO2-Tolerant MIEC Membranes 99
4.5 Integration of High-Temperature O2 Transport Membranes into Oxy-Fuel Process: Real World and Economic Feasibility 103
4.5.1 Four-End and Three-End Integration Modes 103
4.5.2 Pilot-Scale Membrane Systems 104
4.5.3 Further Scale-Up of O2 Production Systems 106
References 109
5. Chemical Looping Combustion for Power Production 117
V. Spallina H. P. Hamers, F. Gallucci and M. van Sint Annaland
5.1 Introduction 117
5.2 Oxygen carriers 120
5.2.1 Nickel-based OCs 122
5.2.2 Iron-based OCs 122
5.2.3 Copper-based OCs 122
5.2.4 Manganese-based OCs 123
5.2.5 Other Oxygen Carriers 123
5.2.6 Sulfur Tolerance 123
5.3 Reactor Concepts 124
5.3.1 Interconnected Fluidized Bed Reactors 124
5.3.2 Packed Bed Reactors 132
5.3.3 Rotating Reactor 143
5.4 The Integration of CLC Reactor in Power Plant 144
5.4.1 Natural Gas Power Plant with CLC 144
5.4.2 Coal-Based Power Plant with CLC 148
5.4.3 Comparison between CLC in packed beds and circulated fluidized beds 162
5.5 Conclusions 164
Nomenclature 167
Subscripts 168
References 168
6. Sorption-Enhanced Fuel Conversion 175
G. Manzolini, D. Jansen and A. D. Wright
6.1 Introduction 175
6.2 Development in Sorption-Enhanced Processes 176
6.2.1 Enhanced Steam Methane Reformer 177
6.2.2 SEWGS 177
6.3 Sorbent Development 180
6.3.1 Sorbent for Sorption-Enhanced Reforming 180
6.3.2 Sorbent for Enhanced Water-Gas Shift 182
6.4 Process Descriptions 188
6.4.1 Fluidised Beds 189
6.4.2 Fixed Beds 190
6.4.3 Design Optimisation of Fixed Bed Processes 195
6.5 Sorption-Enhanced Reaction Processes in Power Plant for CO2 Capture 196
6.5.1 SER 196
6.5.2 SEWGS case 199
6.6 Conclusions 203
Nomenclature 204
References 204
7. Pd-Based Membranes in Hydrogen Production for Fuel cells 209
Rune Bredesen, Thijs A. Peters, Tim Boeltken and Roland Dittmeyer
7.1 Introduction 209
7.2 Characteristics of Fuel Cells and Applications 211
7.3 Centralized and Distributed Hydrogen Production for Energy Applications 213
7.4 Pd-Based Membranes 216
7.5 Hydrogen Production Using Pd-Based Membranes 216
7.5.1 Hydrogen from Natural Gas and Coal 217
7.5.2 Hydrogen from Ethanol 219
7.5.3 Hydrogen from Methanol 220
7.5.4 Hydrogen from Other Hydrocarbon Sources 221
7.5.5 Hydrogen from Ammonia 221
7.6 Process Intensification by Microstructured Membrane Reactors 221
7.7 Integration of Pd-Based Membranes and Fuel Cells 229
7.8 Final Remarks 231
Acknowledgements 231
References 232
8. From Biomass to SNG 243
Luca Di Felice and Francesca Micheli
8.1 Introduction 243
8.2 Current Status of Bio-SNG Production and Facilities in Europe 244
8.3 Bio-SNG Process Configuration 245
8.3.1 The Gasification Step 247
8.3.2 Gas Cleaning 248
8.3.3 The Synthesis Step 250
8.4 Catalytic Systems 251
8.5 The Case Study 253
8.5.1 The Feeding Composition 254
8.5.2 Heat Exchangers 256
8.5.3 Scrubber Tar Removal 257
8.5.4 Ammonia Absorber 258
8.5.5 HCl and H2S Removal 259
8.5.6 Compression Section 259
8.5.7 Separation Section: H2O and CO2 Removal 259
8.5.8 Methanation Section Case 1: Adiabatic Fixed Bed with Intermediate Cooling 260
8.5.9 Methanation Section Case 2: Isothermal Fluidized Bed 262
8.6 Chemical Efficiency 263
8.7 Conclusions 263
References 264
9. Blue Energy: Salinity Gradient for Energy Conversion 267
Paolo Chiesa, Marco Astolfi and Antonio Giuffrida
9.1 Introduction 267
9.2 Fundamentals of Salinity Gradient Exploitation 268
9.3 Pressure Retarded Osmosis Technology 270
9.3.1 Operating Principles 271
9.3.2 Plant Layout and Components 272
9.3.3 Design Criteria and Optimization 276
9.3.4 Technology Review 277
9.3.5 Pilot Testing 278
9.4 The Reverse Electrodialysis Technology 279
9.4.1 Operating Principles and Plant Layout 279
9.4.2 RED Technology Review 282
9.5 Other Salinity Gradient Technologies 284
9.5.1 Reverse Vapor Compression 284
9.5.2 Hydrocratic Generator 288
9.6 Osmotic Power Plants Potential 290
9.6.1 Site Criteria for Osmotic Power Plants 292
9.7 Conclusions 294
References 296
10. Solar Process Heat and Process Intensification 299
Bettina Muster and Christoph Brunner
10.1 Solar Process Heat – A Short Technology Review 299
10.1.1 Examples of solar process heat system concepts 301
10.1.2 Solar process heat collector development 302
10.2 Potential of Solar Process Heat in Industry 305
10.3 Bottlenecks for Integration of Solar Process Heat in Industry 305
10.3.1 Introduction 305
10.3.2 Bottlenecks of the Industrial Process to Integrate Solar Heat Supply 306
10.3.3 Bottlenecks of the Solar Process Heat System 308
10.3.4 Engineering Intensified Process Systems for Renewable Energy Integration 308
10.4 PI – A Promising Approach to Increase the Solar Process Heat Potential? 309
10.4.1 Intensifying the Industrial Process and Possible Effects on Solar Process Heat 311
10.5 Conclusion 328
References 328
11. Bioenergy – Intensified Biomass Utilization 331
Katia Gallucci and Pier Ugo Foscolo
11.1 Introduction 331
11.2 Biomass Gasification: State-of-the-Art Overview 332
11.2.1 Cold Gas Cleaning and Conditioning: Current Systems 335
11.3 Hot Gas Cleaning 343
11.3.1 Contaminant Problems Addressed 343
11.3.2 Dust Filtration 349
11.3.3 Catalytic Conditioning 352
11.3.4 The UNIQUE Concept for Gasification and Hot Gas Cleaning and Conditioning 363
11.4 Conclusions 376
References 377
Index 387
Despre autor
Edited by
FAUSTO GALLUCCI AND MARTIN VAN SINT ANNALAND
Chemical Process Intensification group, Eindhoven University of Technology, The Netherlands