A periodically forced mathematical pendulum is one of the typical and popular nonlinear oscillators that possess complex and rich dynamical behaviors. Although the pendulum is one of the simplest nonlinear oscillators, yet, until now, we are still not able to undertake a systematical study of periodic motions to chaos in such a simplest system due to lack of suitable mathematical methods and computational tools. To understand periodic motions and chaos in the periodically forced pendulum, the perturbation method has been adopted. One could use the Taylor series to expend the sinusoidal function to the polynomial nonlinear terms, followed by traditional perturbation methods to obtain the periodic motions of the approximated differential system.This book discusses Hamiltonian chaos and periodic motions to chaos in pendulums. This book first detects and discovers chaos in resonant layers and bifurcation trees of periodic motions to chaos in pendulum in the comprehensive fashion, which is a base to understand the behaviors of nonlinear dynamical systems, as a results of Hamiltonian chaos in the resonant layers and bifurcation trees of periodic motions to chaos. The bifurcation trees of travelable and non-travelable periodic motions to chaos will be presented through the periodically forced pendulum.
Albert C J Luo
RESONANCE AND BIFURCATION TO CHAOS IN PENDULUM [EPUB ebook]
RESONANCE AND BIFURCATION TO CHAOS IN PENDULUM [EPUB ebook]
Купите эту электронную книгу и получите еще одну БЕСПЛАТНО!
язык английский ● Формат EPUB ● страницы 252 ● ISBN 9789813231696 ● Размер файла 26.1 MB ● издатель World Scientific Publishing Company ● город Singapore ● Страна SG ● опубликованный 2017 ● Загружаемые 24 месяцы ● валюта EUR ● Код товара 5603870 ● Защита от копирования Adobe DRM
Требуется устройство для чтения электронных книг с поддержкой DRM