Dan Burghelea 
NEW TOPOLOGICAL INVARIANTS FOR REAL AND ANGLE VALUED MAPS [EPUB ebook] 
An Alternative to Morse–Novikov Theory

поддержка

This book is about new topological invariants of real- and angle-valued maps inspired by Morse-Novikov theory, a chapter of topology, which has recently raised interest outside of mathematics; for example, in data analysis, shape recognition, computer science and physics. They are the backbone of what the author proposes as a computational alternative to Morse-Novikov theory, referred to in this book as AMN-theory.These invariants are on one side analogues of rest points, instantons and closed trajectories of vector fields and on the other side, refine basic topological invariants like homology and monodromy. They are associated to tame maps, considerably more general than Morse maps, that are defined on spaces which are considerably more general than manifolds. They are computable by computer implementable algorithms and have strong robustness properties. They relate the dynamics of flows that admit the map as ‘Lyapunov map’ to the topology of the underlying space, in a similar manner as Morse-Novikov theory does.

€64.99
Способы оплаты
Купите эту электронную книгу и получите еще одну БЕСПЛАТНО!
язык английский ● Формат EPUB ● страницы 260 ● ISBN 9789814618267 ● Размер файла 22.2 MB ● издатель World Scientific Publishing Company ● город Singapore ● Страна SG ● опубликованный 2017 ● Загружаемые 24 месяцы ● валюта EUR ● Код товара 5528288 ● Защита от копирования Adobe DRM
Требуется устройство для чтения электронных книг с поддержкой DRM

Больше книг от того же автора (ов) / редактор

953 Электронные книги в этой категории

Franz Rothe: A Course in Old and New Geometry : Volume V
The present fifth volume  recalls Hilbert’s axioms from the Foundations of 
') jQuery('#virelinsocial').html('
'); jQuery('.virelinsocial-link').css('display','block').css('margin','0px').css('margin-bottom','5px'); jQuery('#virelinsocial').show(); }); // end of document ready // END wait until jQuery is available } }, 30); })();