Gilberto Bini & Fabio Felici 
Geometric Invariant Theory for Polarized Curves [PDF ebook] 

поддержка

We investigate GIT quotients of polarized curves. More specifically, we study the GIT problem for the Hilbert and Chow schemes of curves of degree d and genus g in a projective space of dimension d-g, as d decreases with respect to g. We prove that the first three values of d at which the GIT quotients change are given by d=a(2g-2) where a=2, 3.5, 4. We show that, for a>4, L. Caporaso’s results hold true for both Hilbert and Chow semistability. If 3.5

€35.69
Способы оплаты

Содержание

Introduction.- Singular Curves.- Combinatorial Results.- Preliminaries on GIT.- Potential Pseudo-stability Theorem.- Stabilizer Subgroups.- Behavior at the Extremes of the Basic Inequality.- A Criterion of Stability for Tails.- Elliptic Tails and Tacnodes with a Line.- A Strati_cation of the Semistable Locus.- Semistable, Polystable and Stable Points (part I).- Stability of Elliptic Tails.- Semistable, Polystable and Stable Points (part II).- Geometric Properties of the GIT Quotient.- Extra Components of the GIT Quotient.- Compacti_cations of the Universal Jacobian.- Appendix: Positivity Properties of Balanced Line Bundles. 

Купите эту электронную книгу и получите еще одну БЕСПЛАТНО!
язык английский ● Формат PDF ● страницы 211 ● ISBN 9783319113371 ● издатель Springer International Publishing ● город Cham ● Страна CH ● опубликованный 2014 ● Загружаемые 24 месяцы ● валюта EUR ● Код товара 3554922 ● Защита от копирования Социальный DRM

Больше книг от того же автора (ов) / редактор

1 264 Электронные книги в этой категории