Pharmaceutical process research and development is an exacting, multidisciplinary effort but a somewhat neglected discipline in the chemical curriculum. This book presents an overview of the many facets of process development and how recent advances in synthetic organic chemistry, process technology and chemical engineering have impacted on the manufacture of pharmaceuticals. In 15 concise chapters the book covers such diverse subjects as route selection and economics, the interface with medicinal chemistry, the impact of green chemistry, safety, the crucial role of physical organic measurements in gaining a deeper understanding of chemical behaviour, the role of the analyst, new tools and innovations in reactor design, purification and separation, solid state chemistry and its role in formulation. The book ends with an assessment of future trends and challenges. The book provides a valuable overview of: both early and late stage chemical development, how safe and scaleable synthetic routes are designed, selected and developed, the importance of the chemical engineering, analytical and manufacturing interfaces, the key enabling technologies, including catalysis and biocatalysis, the importance of the green chemical perspective and solid form issues. The book, written and edited by experts in the field, is a contemporary, holistic treatise, with a logical sequence for process development and mini-case histories within the chapters to bring alive different aspects of the process. It is completely pharmaceutical themed, encompassing all essential aspects, from route and reagent selection to manufacture of the active compound. The book is aimed at both graduates and postgraduates interested in a career in the pharmaceutical industry. It informs them about the breadth of the work carried out in chemical research and development departments, and gives them a feel for the challenges involved in the job. The book is also of value to academics who often understand the drug discovery arena, but have far less appreciation of the drug development area, and are thus unable to advise their students about the relative merits of careers in chemical development versus discovery.
Содержание
Foreword; Preface; Introduction; Process Research and Development in the Pharmaceutical Industry: Origins, Evolution and Progress; Active Pharmaceutical Ingredients: Structure and Impact on Synthesis; Rapid Early Development of Potential Drug Candidates; Route Design and Selection The Importance of Green Chemistry in Process Research and Development; Kinetic Approaches for Faster and Efficient Process Development; The Design of Safe Chemical Reactions — It’s No Accident; Physicochemical Data Requirements for the Design of Fine Chemical Processes — Acquisition and Application; Liquid-Liquid Extraction for Process Development in the Pharmaceutical Industry; Development Enabling Technologies; The Analytical Interface and the Impact on Pharmaceutical Process Development; Materials Science — Solid Form Design and Crystallisation Process Development; Technology Transfer of API; Future Trends and Challenges;
Об авторе
Michael T Williams, formerly at Pfizer, now carries out independent consulting work and is an Associate Consultant with Scientific Update, in addition to his work in editing and scientific writing. After completing a BSc Sp Hons in Chemistry at King’s College, London, he won a Science and Industry Award giving him a year of industrial experience as a medicinal chemist at ICI Pharmaceuticals, and an earmarked SRC grant. Following his Ph D with Prof. Charles Rees at the University of Liverpool, he joined the Chemical Research and Development department of Pfizer. His mid-career responsibilities at Pfizer included the Medicinal Chemistry/Development interface, outsourcing initiatives and technology adoption. In addition to his experience with about 50 early drug candidates, he played a significant role in the late development, filing and commercialization of many agents including Zoloft TM, Viagra TM and Relpax TM. He rose to become Executive Director and Departmental Head of UK Chemical Research and Development in 2003 and he also spent a 10 month secondment leading 75 formulators, and helping to build a 40 strong Material Sciences group. John Blacker holds the Chair of Process Chemistry and is Director of the Institute of Process Research and Development, positions held jointly between the School of Chemistry and School of Process Environmental and Materials Engineering at the University of Leeds. Until recently he worked as Research and Development Technical Director at Piramal Healthcare and has been in the fine chemicals industry for over 17 years with predecessor companies Avecia, Zeneca and ICI. Prior to this, he was a post-doctoral fellow with Prof. Sir Alan Fersht at the University of Cambridge; did a Ph D and DEA in Chimie Organiques with Prof. Jean-Marie Lehn at the University Louis Pasteur Strasbourg, and a BSc Sp.Hons in Chemistry and Biochemistry at the University of Sheffield. As an industrial chemist, he has made contributions to asymmetric catalysis, pharmaceutical process research and development, with over 80 original research articles, patents and many presentations at international conferences, and was awarded the RSC Process Technology Award in 2006. He is also involved in establishing an Institute of Process Research and Development aimed at bridging the innovation gap and supplying the chemical industry with valuable and competitive new technology.