For any cluster algebra whose underlying combinatorial data can be encoded by a bordered surface with marked points, the authors construct a geometric realization in terms of suitable decorated Teichmueller space of the surface. On the geometric side, this requires opening the surface at each interior marked point into an additional geodesic boundary component. On the algebraic side, it relies on the notion of a non-normalized cluster algebra and the machinery of tropical lambda lengths. The authors’ model allows for an arbitrary choice of coefficients which translates into a choice of a family of integral laminations on the surface. It provides an intrinsic interpretation of cluster variables as renormalized lambda lengths of arcs on the surface. Exchange relations are written in terms of the shear coordinates of the laminations and are interpreted as generalized Ptolemy relations for lambda lengths. This approach gives alternative proofs for the main structural results from the authors’ previous paper, removing unnecessary assumptions on the surface.
Sergey Fomin
Cluster Algebras and Triangulated Surfaces Part II [PDF ebook]
Lambda Lengths
Cluster Algebras and Triangulated Surfaces Part II [PDF ebook]
Lambda Lengths
Купите эту электронную книгу и получите еще одну БЕСПЛАТНО!
Формат PDF ● страницы 98 ● ISBN 9781470448233 ● издатель American Mathematical Society ● опубликованный 2018 ● Загружаемые 3 раз ● валюта EUR ● Код товара 8057302 ● Защита от копирования Adobe DRM
Требуется устройство для чтения электронных книг с поддержкой DRM