Thomas Berger & Friedrich Hirzebruch 
Manifolds and Modular Forms [PDF ebook] 

поддержка

During the winter term 1987/88 I gave a course at the University of Bonn under the title "Manifolds and Modular Forms". I wanted to develop the theory of "Elliptic Genera" and to learn it myself on this occasion. This theory due to Ochanine, Landweber, Stong and others was relatively new at the time. The word "genus" is meant in the sense of my book "Neue Topologische Methoden in der Algebraischen Geometrie" published in 1956: A genus is a homomorphism of the Thorn cobordism ring of oriented compact manifolds into the complex numbers. Fundamental examples are the signature and the A-genus. The A-genus equals the arithmetic genus of an algebraic manifold, provided the first Chern class of the manifold vanishes. According to Atiyah and Singer it is the index of the Dirac operator on a compact Riemannian manifold with spin structure. The elliptic genera depend on a parameter. For special values of the parameter one obtains the signature and the A-genus. Indeed, the universal elliptic genus can be regarded as a modular form with respect to the subgroup r (2) of the modular group; the two cusps 0 giving the signature and the A-genus. Witten and other physicists have given motivations for the elliptic genus by theoretical physics using the free loop space of a manifold.

€57.64
Способы оплаты
Купите эту электронную книгу и получите еще одну БЕСПЛАТНО!
язык английский ● Формат PDF ● ISBN 9783663107262 ● Переводчик Peter S. Translated by Landweber ● издатель Vieweg+Teubner Verlag ● опубликованный 2013 ● Загружаемые 3 раз ● валюта EUR ● Код товара 6353190 ● Защита от копирования Adobe DRM
Требуется устройство для чтения электронных книг с поддержкой DRM

Больше книг от того же автора (ов) / редактор

49 025 Электронные книги в этой категории