Recent developments in topology and analysis have led to the creation of new lines of investigation in differential geometry. The 2000 Barrett Lectures present the background, context and main techniques of three such lines by means of surveys by leading researchers. The first chapter (by Alice Chang and Paul Yang) introduces new classes of conformal geometric invariants, and then applies powerful techniques in nonlinear differential equations to derive results on compactifications of manifolds and on Yamabe-type variational problems for these invariants. This is followed by Karsten Grove’s lectures, which focus on the use of isometric group actions and metric geometry techniques to understand new examples and classification results in Riemannian geometry, especially in connection with positive curvature. The chapter written by Jon Wolfson introduces the emerging field of Lagrangian variational problems, which blends in novel ways the structures of symplectic geometry and the techniques of the modern calculus of variations. The lectures provide an up-do-date overview and an introduction to the research literature in each of their areas. This very readable introduction should prove useful to graduate students and researchers in differential geometry and geometric analysis.
Sun-Yung A Chang
Conformal, Riemannian and Lagrangian Geometry [PDF ebook]
Conformal, Riemannian and Lagrangian Geometry [PDF ebook]
Buy this ebook and get 1 more FREE!
Format PDF ● Pages 85 ● ISBN 9781470421731 ● Editor Alexandre Freire ● Publisher American Mathematical Society ● Published 2015 ● Downloadable 3 times ● Currency EUR ● ID 8342346 ● Copy protection Adobe DRM
Requires a DRM capable ebook reader