The first of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.
Innehållsförteckning
Abels, H., Daube, J., Kraus, C. and Kröner, D: The Sharp-Interface Limit for the Navier–Stokes–Korteweg Equations.- Abreu, E., Bustos, A. and Lambert, W. J: Asymptotic Behavior of a Solution of Relaxation System for Flow in Porous Media.- Alessandri, A., Bagnerini, P., Cianci, R. and Gaggeroi, M: Optimal Control of Level Sets Generated by the Normal Flow Equation.- Amadori, D. and Park, J: Emergent Dynamics for the Kinetic Kuramoto Equation.- Ancellin, M., Brosset, L. and Ghidaglia, J-M: A Hyperbolic Model of Non-Equilibrium Phase Change at a Sharp Liquid-Vapor Interface.- Antonelli, P., D’Amico, M. and Marcati, P: The Cauchy Problem for the Maxwell-Schrodinger System with a Power-Type Nonlinearity.- Aregba-Driollet, D. and Brull, S: Construction and Approximation of the Polyatomic Bitemperature Euler System.- Arun, K. R., Das Gupta, A. J. and Samantaray, S: An Implicit-Explicit Scheme Accurate at Low Mach Numbers for the Wave Equation System.- Ballew, J: Bose-Einstein Condensation and Global Dynamics of Solutions to a Hyperbolic Kompaneets Equation.- Barth, A. and Kroker, I: Finite Volume Methods for Hyperbolic Partial Differential Equations with Spatial Noise.- Baty, H. and Nishikawa, H: A Hyperbolic Approach for Dissipative Magnetohydrodynamics.- Berberich, J., Chandrashekar, P. and Klingenberg, C: A General Well-Balanced Finite Volume Scheme for Euler Equations with Gravity.- Berthon, C., Loubre, R. and Michel-Dansac, V: A Second-Order Well-Balanced Scheme for the Shallow-Water Equations with Topography.- Bianchini, S. and Marconi, E: A Lagrangian Approach to Scalar Conservation Laws.- Bonicatto, P: On Uniqueness of Weak Solutions to Transport Equation with Non-Smooth Velocity Field.- Boyaval, S: Johnson-Segalman – Saint-Venant Equations for a 1D Viscoelastic Shallow Flow in Pure Elastic Limit.- Bragin, M. D. and Rogov, B. V: On the Exact Dimensional Splitting for a Scalar Quasilinear Hyperbolic Conservation Law.- Brenier, Y: On the Derivation of the Newtonian Gravitation from the Brownian Agrigation of a Regular Lattice.- Bressan, A: Traffic Flow Models on a Network of Roads.- Brunk, A., Kolbe, N. and Sfakianakis, N: Chemotaxis and Haptotaxis on Cellular Level.- Buchmuller, P., Dreher, J. and Helzel, C: Improved Accuracy of High-Order WENO Finite Volume Methods on Cartesian Grids with Adaptive Mesh Refinement.- Castaneda, P: Explicit Construction of Effective Flux Functions for Riemann Solutions.- Castelli, P., Jabin, P-E. and Junca, S: Fractional Spaces and Conservation Laws.- Castro, M. J., Gallardo, J. M. and Marquina, A: Jacobian-Free Incomplete Riemann Solvers.- Chalons, C., Magiera, J., Rohde, C. and Wiebe, M: A Finite-Volume Tracking Scheme for Two-Phase Compressible Flow.- Chandrashekar, P. and Badwaik, J: Arbitrary Lagrangian-Eulerian Discontinuous Galerkin Method for 1-D Euler Equations.- Chandrashekar, P., Gallego-Valencia, J. P. and Klingenberg, C: A Runge-Kutta Discontinuous Galerkin Scheme for the Ideal Magnetohydrodynamical Model.- Chertock, A., Herty, M. and Nur Ozcan, S: Well-Balanced Central-Upwind Schemes for 2 × 2 Systems of Balance Laws.- Christoforou, C. and Tzavaras, A: On the Relative Entropy Method for Hyperbolic-Parabolic Systems.- Colombo, R. M., Klingenberg, C. and Meltzer, M-C: A Multispecies Traffic Model Based on the Lighthill-Whitham-Richards Model.- Cottet, G-H: Semi-Lagrangian Particle Methods for Hyperbolic Equations.- Courtes, C: Convergence for PDEs with an Arbitrary Odd Order Spatial Derivative Term.- Dai, Z: A Cell-Centered Lagrangian Method for 2D Ideal MHD Equations.- Dal Santo, E., Rosini, M. D. and Dymski, N: The Riemann Problem for a General.- Dedner, A. and Giesselmann, J: Residual Error Indicators for d G Schemes for Discontinuous Solutions to Systems of Conservation Laws.- Deolmi, G., Dahmen, W., Müller, S., Albers, M., Meysonnat, P. S. and Schroder, W: Effective Boundary Conditions for Turbulent Compressible Flows Over a Riblet Surface.- Francesco, M. D., Fagioli, S., Rosini, M.D. and Russo, G: A Deterministic Particle Approximation for Non-Linear Conservation Laws.- Iorio, E. D., Marcati, P. and Spirito, S: Splash Singularity for a Free-Boundary Incompressible Viscoelastic Fluid Model.- Egger, H. and Kugler, T: An Asymptotic Preserving Mixed Finite Element Method for Wave Propagation in Pipelines.- Elling, V: Nonexistence of Irrotational Flow Around Solids with Protruding Corners.- Flohr, R. and Rottmann-Matthes, J: A Splitting Approach for Freezing Waves.- Folino, R: Metastability for Hyperbolic Variations of Allen–Cahn Equation.- Fridrich, D., Liska, R. and Wendroff, B: Cell-Centered Lagrangian Lax-Wendroff HLL Hybrid Schemes in Cylindrical Geometry.- Galstian, A: Semilinear Shifted Wave Equation in the de Sitter Spacetime with Hyperbolic Spatial Part.- Galtung, S-T: Convergence Rates of a Fully Discrete Galerkin Scheme for the Benjamin–Ono Equation.- Gerhard, N. and Müller, S: The Simulation of a Tsunami Run-up Using Multiwavelet-Based Grid Adaptation.- Gersbacher, C. and Nolte, M: Constrained Reconstruction in MUSCL-type Finite Volume Schemes.- Giesselmann, J. and Zacharenakis, D: A Posteriori Analysis for the Euler-Korteweg Model.- Gomes, D., Nurbekyan, L. and Sedjro, M: Concervations Laws Arising in the Study of Forward-Forward Mean-Field Games.- Gugat, M., Herty, M. and Yu, H: On the Relaxation Approximation for 2 × 2 Hyperbolic Balance Laws.- Hantke, M., Matern, C. and Warnecke, G: Numerical Solutions for a Weakly Hyperbolic Dispersed Two-phase Flow Model.- Hawerkamp, M., Kröner, D. and Moenius, H: Optimal Controls in Flux-, Source- and Initial Terms for Weakly Coupled Hyperbolic Systems.- Herty, M., Kurganov, A., and Kurochkin, D: On Convergence of Numerical Methods for Optimization Problems Governed by Scalar Hyperbolic Conservation Laws.
Om författaren
Christian Klingenberg is a professor in the Department of Mathematics at Wuerzburg University, Germany.
Michael Westdickenberg is a professor at the Institute for Mathematics at RWTH Aachen University, Germany.