Gilles Pisier 
Complex Interpolation between Hilbert, Banach and Operator Spaces [PDF ebook] 

Stöd

Motivated by a question of Vincent Lafforgue, the author studies the Banach spaces $X$ satisfying the following property: there is a function $/varepsilon/to /Delta_X(/varepsilon)$ tending to zero with $/varepsilon>0$ such that every operator $T/colon / L_2/to L_2$ with $/T//le /varepsilon$ that is simultaneously contractive (i.e., of norm $/le 1$) on $L_1$ and on $L_/infty$ must be of norm $/le /Delta_X(/varepsilon)$ on $L_2(X)$. The author shows that $/Delta_X(/varepsilon) /in O(/varepsilon^/alpha)$ for some $/alpha>0$ iff $X$ is isomorphic to a quotient of a subspace of an ultraproduct of $/theta$-Hilbertian spaces for some $/theta>0$ (see Corollary 6.7), where $/theta$-Hilbertian is meant in a slightly more general sense than in the author’s earlier paper (1979).

€105.43
Betalningsmetoder
Köp den här e-boken och få 1 till GRATIS!
Formatera PDF ● Sidor 78 ● ISBN 9781470405922 ● Utgivare American Mathematical Society ● Nedladdningsbara 3 gånger ● Valuta EUR ● ID 6613165 ● Kopieringsskydd Adobe DRM
Kräver en DRM-kapabel e-läsare

Fler e-böcker från samma författare (r) / Redaktör

48 763 E-böcker i denna kategori