An operator $C$ on a Hilbert space $/mathcal H$ dilates to an operator $T$ on a Hilbert space $/mathcal K$ if there is an isometry $V:/mathcal H/to /mathcal K$ such that $C= V^* TV$. A main result of this paper is, for a positive integer $d$, the simultaneous dilation, up to a sharp factor $/vartheta (d)$, expressed as a ratio of $/Gamma $ functions for $d$ even, of all $d/times d$ symmetric matrices of operator norm at most one to a collection of commuting self-adjoint contraction operators on a Hilbert space.
Köp den här e-boken och få 1 till GRATIS!
Formatera PDF ● Sidor 104 ● ISBN 9781470449476 ● Utgivare American Mathematical Society ● Nedladdningsbara 3 gånger ● Valuta EUR ● ID 8057323 ● Kopieringsskydd Adobe DRM
Kräver en DRM-kapabel e-läsare