Prabhakar Misra 
Spectroscopy and Characterization of Nanomaterials and Novel Materials [PDF ebook] 
Experiments, Modeling, Simulations, and Applications

Stöd

Spectroscopy and Characterization of Nanomaterials and Novel Materials

Comprehensive overview of nanomaterial characterization methods and applications from leading researchers in the field

In Spectroscopy and Characterization of Nanomaterials and Novel Materials: Experiments, Modeling, Simulations, and Applications, the editor Prabhakar Misra and a team of renowned contributors deliver a practical and up-to-date exploration of the characterization and applications of nanomaterials and other novel materials, including quantum materials and metal clusters. The contributions cover spectroscopic characterization methods for obtaining accurate information on optical, electronic, magnetic, and transport properties of nanomaterials.

The book reviews nanomaterial characterization methods with proven relevance to academic and industry research and development teams, and modern methods for the computation of nanomaterials’ structure and properties – including machine-learning approaches – are also explored. Readers will also find descriptions of nanomaterial applications in energy research, optoelectronics, and space science, as well as:


  • A thorough introduction to spectroscopy and characterization of graphitic nanomaterials and metal oxides

  • Comprehensive explorations of simulations of gas separation by adsorption and recent advances in Weyl semimetals and axion insulators

  • Practical discussions of the chemical functionalization of carbon nanotubes and applications to sensors

  • In-depth examinations of micro-Raman imaging of planetary analogs


Perfect for physicists, materials scientists, analytical chemists, organic and polymer chemists, and electrical engineers, Spectroscopy and Characterization of Nanomaterials and Novel Materials: Experiments, Modeling, Simulations, and Applications will also earn a place in the libraries of sensor developers and computational physicists and modelers.

€162.99
Betalningsmetoder

Innehållsförteckning

Preface xix

About the Editor xxvii


Part I Spectroscopy and Characterization 1

1 Spectroscopic Characterization of Graphitic Nanomaterials and Metal Oxides for Gas Sensing 3

Olasunbo Farinre, Hawazin Alghamdi, and Prabhakar Misra

1.1 Introduction and Overview 3

1.1.1 Graphitic Nanomaterials 3

1.1.1.1 Synthesis of Graphitic Nanomaterials 5

1.1.2 Metal Oxides 8

1.2 Spectroscopic Characterization of Graphitic Nanomaterials and Metal Oxides 9

1.2.1 Graphitic Nanomaterials 9

1.2.1.1 Characterization of Carbon Nanotubes (CNTs) 10

1.2.1.2 Characterization of Graphene and Graphene Nanoplatelets (Gn Ps) 11

1.2.2 Characterization of Tin Dioxide (Sn O2) 12

1.3 Graphitic Nanomaterials and Metal Oxide-Based Gas Sensors 19

1.3.1 Fabrication of Graphitic Nanomaterials-Based Gas Sensors 19

1.3.1.1 Carbon Nanotube (CNT)-Based Gas Sensors 19

1.3.1.2 Graphene and Graphene Nanoplatelet (Gn P)-Based Gas Sensors 20

1.3.2 Fabrication of Metal Oxide-Based Gas Sensors 21

1.3.2.1 Tin Dioxide (Sn O2)-Based Gas Sensors 23

1.4 Conclusions and Future Work 24 Acknowledgments 26 References 26


2 Low-dimensional Carbon Nanomaterials: Synthesis, Properties, and Applications Related to Heat Transfer, Energy Harvesting, and Energy Storage 33

Mahesh Vaka, Tejaswini Rama Bangalore Ramakrishna, Khalid Mohammad, and Rashmi Walvekar

2.1 Introduction 33

2.2 Synthesis and Properties of Low-dimensional Carbon Nanomaterials 35

2.2.1 Zero-dimensional Carbon Nanomaterials (0-DCNs) 35

2.2.1.1 Fullerene 35

2.2.1.2 Carbon-encapsulated Metal Nanoparticles 35

2.2.1.3 Nanodiamond 37

2.2.2 Onion-like Carbons 38

2.2.3 One-dimensional Carbon Nanomaterials 39

2.2.3.1 Carbon Nanotube 39

2.2.3.2 Carbon Fibers 39

2.2.4 Two-dimensional Carbon Nanomaterials 40

2.3 Applications 42

2.3.1 Hydrogen Storage 42

2.3.2 Solar Cells 43

2.3.3 Thermal Energy Storage 44

2.3.4 Energy Conversion 45

2.4 Conclusions 46

References 46


3 Mesoscale Spin Glass Dynamics 55

Samaresh Guchhait

3.1 Introduction 55

3.2 What Is a Spin Glass? 56

3.2.1 Spin Glass and Its Correlation Length 57

3.2.2 Mesoscale Spin Glass Dynamics 60

3.3 Summary 64 Acknowledgments 64 References 64


4 Raman Spectroscopy Characterization of Mechanical and Structural Properties of Epitaxial Graphene 67

Amira Ben Gouider Trabelsi, Feodor V. Kusmartsev, Anna Kusmartseva, and Fatemah Homoud Alkallas

4.1 Introduction 67

4.2 Epitaxial Graphene Mechanical Properties Investigation 68

4.2.1 Optical Location of Epitaxial Graphene Layers 68

4.2.2 Raman Location of Mechanical Properties Changes 71

4.2.2.1 Graphene 2D Mode 71

4.2.2.2 G Mode Investigation 74

4.2.2.3 Strain Percentage 76

4.3 Raman Polarization Study 77

4.3.1 Size Domain of Graphene Layer 77

4.3.2 Polarization Study 78

4.4 Conclusions 80 Acknowledgments 80 References 80


5 Raman Spectroscopy Studies of III–V Type II Superlattices 83

Henan Liu and Yong Zhang

5.1 Introduction 83

5.2 Raman Study on In As/Ga Sb SL 84

5.2.1 Analysis on (001) Scattering Geometry 85

5.2.2 Analysis on (110) Scattering Geometry 86

5.3 Raman Study on In As/In As1−x Sbx SL 90

5.3.1 Raman Results for the Constituent Bulks and In As1−x Sbx Alloys 90

5.3.2 Analysis on (001) Scattering Geometry for the SLs 93

5.3.3 Analysis on (110) Scattering for the SLs 95

5.4 A Comparison Among the In As/In As1−x Sbx, In As/Ga Sb, and Ga As/Al As SLs 97

5.5 Conclusion 98

References 98


6 Dissecting the Molecular Properties of Nanoscale Materials Using Nuclear Magnetic Resonance Spectroscopy 101

Nipanshu Agarwal and Krishna Mohan Poluri

6.1 Introduction to Nanomaterials 101

6.2 Techniques Used for Characterization of Nanomaterials 104

6.3 Nuclear Magnetic Resonance (NMR) Spectroscopy 105

6.3.1 Principle of NMR Spectroscopy 106

6.3.2 Various NMR Techniques Used in Nanomaterial Characterization 106

6.3.2.1 One-dimensional NMR Spectroscopy 108

6.3.2.2 Relaxometry (T1 and T2) 108

6.3.2.3 Two-dimensional NMR Spectroscopy 110

6.3.3 Advantages and Disadvantages of Using NMR Spectroscopy 114

6.4 Applications of NMR in Nanotechnology 115

6.4.1 NMR for Characterization of Nanomaterials 115

6.4.1.1 Characterization of Gold Nanomaterials by NMR 115

6.4.1.2 Characterization of Organic Nanomaterials by NMR 119

6.4.1.3 Characterization of Quantum Dots and Nanodiamonds by NMR 120

6.4.2 Elucidating the Molecular Characteristics/Interactions of Nanomaterials Using NMR 120

6.4.2.1 Characterizing Nanodisks Using Paramagnetic NMR 120

6.4.2.2 Characterizing Nanomaterials Using Low Field NMR (LF-NMR) 123

6.4.2.3 Analyzing Nanomaterial Interactions Using 2D NMR Techniques 123

6.4.3 Characterization of Magnetic Contrast Agents (MR-CAs) 128

6.5 Conclusions 132 Acknowledgments 132 References 132


7 Charge Dynamical Properties of Photoresponsive and Novel Semiconductors Using Time-Resolved Millimeter-Wave Apparatus 149

Biswadev Roy, Branislav Vlahovic, M.H. Wu, and C.R. Jones

7.1 Introduction 149

7.1.1 Why Charge Dynamics for Novel Materials in the Millimeter-Wave Regime? 150

7.1.2 Underlying Theory of Operation and Time-Resolved Data: Treatment of Internal Fields in Samples 154

7.1.3 Apparatus Design and Instrumentation 156

7.1.4 Sensitivity Analysis and Dynamic Range 158

7.1.5 Calibration Factor 159

7.2 Studies on RF Responses of Materials 162

7.2.1 Transmission and Reflection Response for Ga As 162

7.2.2 Silicon Response by Resistivity 162

7.2.2.1 Charge Carrier Concentration 165

7.2.2.2 Millimeter-Wave Probe and Laser Data 166

7.2.2.3 TR-mm WC Charge Dynamical Parameter Correlation Table and Sample-Resistivity 168

7.2.2.4 Photoconductance (ΔG) Using Calculated Sensitivity 171

7.3 Cd Sx Se1−x Nanowires 174

7.3.1 Transmission and Reflection Response Spectra for Cd X Nanowire 174

7.3.2 Millimeter-Wave Signal Coherence and Decay Response of Cd Sx Se1−x Nanowire 176

7.4 Conclusions 182

7.5 Data: Cd Sx Se1−x TR-mm WC Responses for Various Pump Fluences 182

Acknowledgments 183

References 183


8 Metal Nanoclusters 187

Sayani Mukherjee and Sukhendu Mandal

8.1 Introduction 187

8.2 Gold Nanoclusters 189

8.2.1 Phosphine-protected Au-NCs 190

8.2.2 Thiol-protected Nanoclusters 193

8.2.2.1 Brust–Schiffrin Synthesis 193

8.2.2.2 Modified Brust–Schiffrin Synthesis 194

8.2.2.3 Size-focusing Method 197

8.2.2.4 Ligand Exchange-induced Structural Transformation 200

8.2.3 Other Ligands as Protecting Agents 202

8.3 Mixed Metals Alloy Nanoclusters 202

8.4 Conclusion 203

8.5 Future Direction 203 Acknowledgment 204 References 204


Part II Modeling and Simulation 211


9 Simulations of Gas Separation by Adsorption 213

Hawazin Alghamdi, Hind Aljaddani, Sidi Maiga, and Silvina Gatica

9.1 Introduction 213

9.2 Simulation Methods 216

9.2.1 Molecular Dynamics Simulations 216

9.2.2 Monte Carlo Simulations 217

9.2.3 Ideal Adsorbed Solution Theory (IAST) 218

9.3 Models 220

9.3.1 Molecular Models 220

9.3.2 Substrate Models 221

9.3.3 Validation of the Methods and Force Fields 222

9.4 Examples 223

9.4.1 GCMC Simulation of CO2/CH4 Binary Mixtures on Nanoporous Carbons 223

9.4.2 MD Simulations of CO2/CH4 Binary Mixtures on Graphene Nanoribbons/Graphite 224

9.4.3 MD Simulations of H2O/N2 Binary Mixtures on Graphene 228

9.4.4 Calculation of the Selectivity of CO2 and CH4 on Graphene Using the IAST 231

9.5 Conclusion 236

References 236

10 Recent Advances in Weyl Semimetal (Mn Bi2Se4) and Axion Insulator (Mn Bi2Te4) 239

Sugata Chowdhury, Kevin F. Garrity, and Francesca Tavazza

10.1 Introduction 239

10.2 Discussion 241

10.2.1 MBS 242

10.2.2 MBT 243

10.3 Outlook 252

References 253


Part III Applications 261


11 Chemical Functionalization of Carbon Nanotubes and Applications to Sensors 263

Khurshed Ahmad Shah and Muhammad Shunaid Parvaiz

11.1 Introduction 263

11.2 Properties of Carbon Nanotubes 267

11.2.1 Electrical Properties 267

11.2.2 Mechanical Properties 269

11.2.3 Optical Properties 269

11.2.4 Physical Properties 271

11.3 Properties of Functionalized Carbon Nanotubes 272

11.3.1 Mechanical Properties 272

11.3.2 Electrical Properties 272

11.4 Types of Chemical Functionalization 273

11.4.1 Thermally Activated Chemical Functionalization 273

11.4.2 Electrochemical Functionalization 273

11.4.3 Photochemical Functionalization 274

11.5 Chemical Functionalization Techniques 274

11.5.1 Chemical Techniques 274

11.5.2 Electrons/Ions Irradiation Techniques 275

11.5.3 Specialized Techniques 275

11.6 Sensing Applications of Carbon Nanotubes 276

11.6.1 Gas Sensors 276

11.6.2 Biosensors 277

11.6.3 Chemical Sensors 277

11.6.4 Electrochemical Sensors 278

11.6.5 Temperature Sensors 278

11.6.6 Pressure Sensors 278

11.7 Advantages and Disadvantages of Carbon Nanotube Sensors 278

11.8 Summary 279

References 280


12 Graphene for Breakthroughs in Designing Next-Generation Energy Storage Systems 287

Abhilash Ayyapan Nair, Manoj Muraleedharan Pillai, and Sankaran Jayalekshmi

12.1 Introduction 287

12.2 Li–Ion Cells 289

12.2.1 Basic Working Mechanism 289

12.2.2 Role of Graphene: Graphene Foam-Based Electrodes for Li–Ion Cells 291

12.3 Li–S Cells 294

12.3.1 Advantages of Li–S Cells 295

12.3.2 Working of Li–S Cells 295

12.3.3 Challenges of Li–S Cells 296

12.3.4 Graphene-Based Sulfur Cathodes for Li–S Cells 297

12.3.5 Graphene Oxide-Based Sulfur Cathodes for Li–S Cells 298

12.4 Supercapacitors 299

12.4.1 Basic Working Principle 299

12.4.2 Graphene-Based Supercapacitor Electrodes 300

12.4.3 Graphene/Polymer Composites as Electrodes 303

12.4.4 Graphene/Metal Oxide Composite Electrodes 305

12.5 Li–Ion Capacitors 306

12.5.1 Working Principle 306

12.5.2 Graphene/Graphene Composites as Cathode Materials 307

12.5.3 Graphene/Graphene Composites as Anode Materials 309

12.6 Looking Forward 310

References 311


13 Progress in Nanostructured Perovskite Photovoltaics 317

Sreekanth Jayachandra Varma and Ramakrishnan Jayakrishnan

13.1 Introduction 317

13.2 Nanostructured Perovskites as Efficient Photovoltaic Materials 318

13.3 Perovskite Quantum Dots 321

13.4 Perovskite Nanowires and Nanopillars 324

13.4.1 2D Perovskite Nanostructures 326

13.4.2 2D/3D Perovskite Heterostructures 330

13.5 Summary 336

References 336


14 Applications of Nanomaterials in Nanomedicine 345

Ayanna N. Woodberry and Francis E. Mensah

14.1 Introduction 345

14.2 Nanomaterials, Definition, and Historical Perspectives 345

14.2.1 What Are Nanomaterials? 345

14.2.2 Origin and Historical Perspectives 346

14.2.3 Synthesis of Nanomaterials 349

14.2.3.1 Inorganic Nanoparticles 349

14.3 Nanomaterials and Their Use in Nanomedicine 351

14.3.1 What Is Nanomedicine? 351

14.3.2 The Myth of Small Molecules 351

14.3.3 Nanomedicine Drug Delivery Has Implications that Go Beyond Medicine 351

14.3.4 Improvement in Function 351

14.3.5 Nanomaterials Use in Nanomedicine for Therapy 351

14.3.5.1 Progress in Polymer Therapeutics as Nanomedicine 351

14.3.5.2 Recent Progress in Polymer: Therapeutics as Nanomedicines 352

14.3.5.3 Use of Linkers 354

14.3.5.4 Targeting Moiety 354

14.3.6 Polymeric Drugs 355

14.3.7 Polymeric-Drug Conjugates 355

14.3.8 Polymer–Protein Conjugates 356

14.4 The Use of Nanomaterials in Global Health for the Treatment of Viral Infections Such As the DNA and the RNA Viruses, Retroviruses, Ebola, and COVID-19 356

14.4.1 Nanomaterials in Radiation Therapy 358

14.5 Conclusion 359

References 359


15 Application of Carbon Nanomaterials on the Performance of Li-Ion Batteries 361

Quinton L. Williams, Adewale A. Adepoju, Sharah Zaab, Mohamed Doumbia, Yahya Alqahtani, and Victoria Adebayo

15.1 Introduction 361

15.2 Battery Background 362

15.2.1 Genesis of the Rechargeable Battery 362

15.2.2 Battery Cell Classifications 363

15.2.2.1 Primary Batteries – Non-rechargeable Batteries 363

15.2.2.2 Secondary Batteries – Rechargeable Batteries 363

15.2.3 Comparison of Rechargeable Batteries 363

15.2.4 Internal Battery Cell Components 364

15.2.4.1 Cathode 365

15.2.4.2 Anode 366

15.2.4.3 Electrolyte 366

15.2.5 Crystal Structure of Active Materials 366

15.2.5.1 Layered Li Co O2 367

15.2.5.2 Spinel Li M2O4 367

15.2.5.3 Olivine Li Fe PO4 368

15.2.5.4 NCM 369

15.2.6 Principle of Operation of Li-Ion Batteries 370

15.2.7 Battery Terminology 371

15.2.7.1 Battery Safety 373

15.2.8 A Glimpse into the Future of Battery Technology 374

15.3 High C-Rate Performance of Li Fe PO4/Carbon Nanofibers Composite Cathode for Li-Ion Batteries 375

15.3.1 Introduction 375

15.3.2 Experimental 375

15.3.2.1 Preparation of Composite Cathode 375

15.3.2.2 Characterization 376

15.3.3 Results and Discussion 376

15.3.4 Summary 379

15.4 Graphene Nanoplatelet Additives for High C-Rate Li Fe PO4 Battery Cathodes 380

15.4.1 Introduction 380

15.4.2 Experimental 381

15.4.2.1 Composite Cathode Preparation and Battery Assembly 381

15.4.2.2 Characterizations and Electrochemical Measurements 382

15.4.3 Results and Discussion 382

15.4.4 Summary 386

15.5 Li Fe PO4 Battery Cathodes with PANI/CNF Additive 386

15.5.1 Introduction 386

15.5.2 Experimental 386

15.5.2.1 Preparation of the PANI/CNF Conducting Agent and Coin Cell 387

15.5.3 Results and Discussion 387

15.5.4 Conclusion 392

15.6 Reduced Graphene Oxide – Li Fe PO4 Composite Cathode for Li-Ion Batteries 393

15.6.1 Introduction 393

15.6.2 Experimental 394

15.6.3 Results and Discussion 394

15.6.4 Summary 398

15.7 Rate Performance of Carbon Nanofiber Anode for Lithium-Ion Batteries 398

15.7.1 Introduction 398

15.7.2 Experimental 398

15.7.3 Results and Discussion 399

15.7.4 Summary 401

15.8 NCM Batteries with the Addition of Carbon Nanofibers in the Cathode 402

15.8.1 Introduction 402

15.8.2 Experimental 403

15.8.3 Results and Discussion 403

15.8.4 Summary 405

15.9 Conclusion 407 Acknowledgments 407 References 408


Part IV Space Science 415


16 Micro-Raman Imaging of Planetary Analogs: Nanoscale Characterization of Past and Current Processes 417

Dina M. Bower, Ryan Jabukek, Marc D. Fries, and Andrew Steele

16.1 Introduction 417

16.2 Relationships Between Minerals 421

16.2.1 Minerals in the Solar System 421

16.2.2 Minerals as Indicators of Life and Habitability 425

16.3 Planetary Analogs 427

16.3.1 Modern Terrestrial Analogs 427

16.3.2 Ancient Terrestrial Analogs 429

16.4 Meteorites and Lunar Rocks 431

16.5 Carbon 434

16.5.1 Definition and Description of Macromolecular Carbon 434

16.5.2 Macromolecular Carbon on the Earth and in Astromaterials 435

16.5.3 Macromolecular Carbon in Petrographic Context 437

16.6 Conclusion 439

References 439


17 Machine Learning and Nanomaterials for Space Applications 453

Eric Lyness, Victoria Da Poian, and James Mackinnon

17.1 Introduction to Artificial Intelligence and Machine Learning 453

17.1.1 What Do We Mean by Artificial Intelligence and Machine Learning? 454

17.1.2 The Field of Data Analysis and Data Science 455

17.1.2.1 Data Analysis 455

17.1.2.2 Data Science 455

17.1.3 Applications in Nanoscience 456

17.2 Machine Learning Methods and Tools 457

17.2.1 Types of ML 457

17.2.1.1 Supervised 457

17.2.1.2 Unsupervised 459

17.2.1.3 Semi-supervised 460

17.2.1.4 Reinforcement Learning 460

17.2.2 The Basic Techniques and the Underlying Algorithms 460

17.2.2.1 Regression (Linear, Logistic) 460

17.2.2.2 Decision Tree 461

17.2.2.3 Neural Networks 461

17.2.2.4 Expert Systems 463

17.2.2.5 Dimensionality Reduction 463

17.2.3 Available Tools: Discussion of the Software Available, Both Free and Commercial, and How They Can Be Used by Nonexperts 464

17.3 Limitations of AI 464

17.3.1 Data Availability 464

17.3.1.1 Splitting Your Dataset 464

17.3.2 Warnings in Implementation (Overfitting, Cross-validation) 465

17.3.3 Computational Power 465

17.4 Case Study: Autonomous Machine Learning Applied to Space Applications 466

17.4.1 Few Existing AI Applications for Planetary Missions 466

17.4.2 MOMA Use-Case Project (Leaning Toward Science Autonomy) 467

17.5 Challenges and Approaches to Miniaturized Autonomy 468

17.5.1 Computing Requirements of AI/Machine Learning 468

17.5.2 Why Is Space Hard? 469

17.5.3 Software Approaches for Embedded Hardware 471

17.6 Summary: How to Approach AI 473

References 474

Index 477


Om författaren

Prabhakar Misra, Ph D, is a Professor in the Department of Physics and Astronomy at Howard University in Washington, DC. He has over 30 years of experience researching the detection and spectroscopic characterization of jet-cooled free radicals, ions and stable molecules of relevance to combustion phenomena and plasmas, Raman spectroscopy and Molecular Dynamics simulation of nanomaterials for gas-sensing applications, and other contemporary areas in experimental atomic and molecular physics and condensed matter physics.

Köp den här e-boken och få 1 till GRATIS!
Språk Engelska ● Formatera PDF ● ISBN 9783527833672 ● Filstorlek 13.6 MB ● Redaktör Prabhakar Misra ● Utgivare Wiley-VCH GmbH ● Land DE ● Publicerad 2022 ● Utgåva 1 ● Nedladdningsbara 24 månader ● Valuta EUR ● ID 8339091 ● Kopieringsskydd Adobe DRM
Kräver en DRM-kapabel e-läsare

Fler e-böcker från samma författare (r) / Redaktör

28 105 E-böcker i denna kategori