Thomas Engel & Johann Gasteiger 
Chemoinformatics [EPUB ebook] 
Basic Concepts and Methods

Stöd
This essential guide to the knowledge and tools in the field includes everything from the basic concepts to modern methods, while also forming a bridge to bioinformatics.

The textbook offers a very clear and didactical structure, starting from the basics and the theory, before going on to provide an overview of the methods. Learning is now even easier thanks to exercises at the end of each section or chapter. Software tools are explained in detail, so that the students not only learn the necessary theoretical background, but also how to use the different software packages available. The wide range of applications is presented in the corresponding book Applied Chemoinformatics – Achievements and Future Opportunities (ISBN 9783527342013). For Master and Ph D students in chemistry, biochemistry and computer science, as well as providing an excellent introduction for other newcomers to the field.
€83.99
Betalningsmetoder

Innehållsförteckning

Foreword xxi


List of Contributors xxv


1 Introduction 1
Thomas Engel and Johann Gasteiger


1.1 The Rationale for the Books 1


1.2 The Objectives of Chemoinformatics 2


1.3 Learning in Chemoinformatics 4


1.4 Outline of the Book 5


1.5 The Scope of the Book 7


1.6 Teaching Chemoinformatics 8


References 8


2 Principles of Molecular Representations 9
Thomas Engel


2.1 Introduction 9


2.2 Chemical Nomenclature 11


2.2.1 Non-systematic Nomenclature (Trivial Names) 11


2.2.2 Systematic Nomenclature of Chemical Compounds 12


2.2.3 Drawbacks of Chemical Nomenclature for Data Processing 12


2.3 Chemical Notations 12


2.3.1 Empirical Formulas of Inorganic and Organic Compounds 12


2.3.2 Line Notations 14


2.4 Mathematical Notations 14


2.4.1 Introduction into Graph Theory 15


2.4.2 Matrix Representations 18


2.4.2.1 Adjacency Matrix 18


2.4.2.2 Incidence Matrix 19


2.4.2.3 Distance Matrix 20


2.4.2.4 Bond Matrix 21


2.4.2.5 Bond–Electron Matrix 21


2.4.2.6 Summary on Matrix Representations 23


2.4.3 Connection Table 23


2.5 Specific Types of Chemical Structures 25


2.5.1 General Concepts of Isomerism 25


2.5.2 Tautomerism 26


2.5.3 Markush Structures 27


2.5.4 Beyond a Connection Table Representation 28


2.5.4.1 Representation of Molecular Structures by Electron Systems 28


2.6 Spatial Representation of Structures 31


2.6.1 Representation of Configurational Isomers 32


2.6.2 Chirality 33


2.6.3 3D Coordinate Systems 36


2.7 Molecular Surfaces 37


Selected Reading 38


References 393


3 Computer Processing of Chemical Structure Information 43
Thomas Engel


3.1 Introduction 43


3.2 Standard File Formats for Chemical Structure Information 44


3.2.1 SMILES 44


3.2.1.1 Stereochemistry in SMILES 47


3.2.1.2 Summary on SMILES 47


3.2.2 SMARTS 47


3.2.3 SYBYL Line Notation 48


3.2.4 The International Chemical Identifier (In Ch I) and In Ch IKey 48


3.2.5 XYZ Format 50


3.2.6 Z-Matrix 51


3.2.7 The Molfile Format Family 52


3.2.7.1 Structure of a Molfile 53


3.2.7.2 Stereochemistry in the Molfile 57


3.2.7.3 Structure of an SDfile 57


3.2.8 The PDB File Format 58


3.2.8.1 Introduction/History 58


3.2.8.2 General Description 58


3.2.8.3 Analysis of a Sample PDB File 60


3.2.9 Metadata Formats 65


3.2.9.1 STAR-Based File Formats and Dictionaries 65


3.2.9.2 CIF File Format 66


3.2.9.3 mm CIF File Format 67


3.2.9.4 CML 68


3.2.9.5 CSRML 68


3.2.10 Libraries for Handling Information in Structure File Formats 69


3.3 Input and Output of Chemical Structures 70


3.3.1 Molecule Editors 72


3.3.2 Molecule Viewers 73


3.4 Processing Constitutional Information 73


3.4.1 Structure Isomers and Isomorphism 73


3.4.2 Tautomerism 74


3.4.3 Unambiguous and Biunique Representation by Canonicalization 76


3.4.3.1 The Morgan Algorithm 77


3.4.4 Ring Perception 79


3.4.4.1 Introduction 79


3.4.4.2 Graph Terminology 80


3.4.4.3 Ring Perception Strategies 81


3.5 Processing 3D Structure Information 86


3.5.1 Detection and Specification of Chirality 86


3.5.1.1 Detection of Chirality 87


3.5.1.2 Specification of Chirality 87


3.5.2 Automatic Generation of 3D Structures 90


3.5.3 Automatic Generation of Ensemble of Conformations 94


3.6 Visualization of Molecular Models 100


3.6.1 Introduction 100


3.6.2 Models of the 3D Structure 101


3.6.2.1 Wire Frame and Capped Sticks Model 101


3.6.2.2 Ball-and-Stick Model 101


3.6.2.3 Space-Filling Model 102


3.6.2.4 Crystallographic Models 102


3.6.3 Models of Biological Macromolecules 102


3.6.4 Virtual Reality 103


3.6.5 3D Printing 103


3.7 Calculation of Molecular Surfaces 103


3.7.1 Van der Waals Surface 104


3.7.2 Connolly Surface 104


3.7.3 Solvent-Accessible Surface 105


3.7.4 Enzyme Cavity Surface (Union Surface) 106


3.7.5 Isovalue-Based Electron Density Surface 106


3.7.6 Experimentally Determined Surfaces 106


3.7.7 Visualization of Molecular Surface Properties 107


3.7.8 Property-based Isosurfaces 107


3.7.8.1 Electrostatic Potentials 108


3.7.8.2 Hydrogen Bonding Potential 108


3.7.8.3 Polarizability and Hydrophobicity Potential 108


3.7.8.4 Spin Density 108


3.7.8.5 Vector Fields 108


3.7.8.6 Volumetric Properties 108


3.8 Chemoinformatic Toolkits and Workflow Environments 109


Selected Reading 111


References 111


4 Representation of Chemical Reactions 121
Oliver Sacher and Johann Gasteiger


4.1 Introduction 121


4.2 Reaction Equation 122


4.3 Reaction Types 123


4.4 Reaction Center and Reaction Mechanisms 125


4.5 Chemical Reactivity 126


4.5.1 Physicochemical Effects 126


4.5.1.1 Charge Distribution 126


4.5.1.2 Inductive Effect 127


4.5.1.3 Resonance Effect 127


4.5.1.4 Polarizability Effect 128


4.5.1.5 Steric Effect 128


4.5.1.6 Stereoelectronic Effects 128


4.5.2 Simple Methods for Quantifying Chemical Reactivity 128


4.5.2.1 Frontier Molecular Orbital Theory 128


4.5.2.2 Linear Free Energy Relationships 130


4.6 Learning from Reaction Information 132


4.7 Building of Reaction Databases 133


4.7.1 Contents 133


4.7.2 Reaction Data Exchange Formats 134


4.7.2.1 RXN/RDF format by MDL/Symyx 134


4.7.2.2 Reaction SMILES/SMIRKS by Daylight Chemical Information Systems 134


4.7.2.3 Chemical Markup Language 135


4.7.2.4 International Chemical Identifier for Reactions (Rin Ch I) 135


4.7.3 Input and Output of Reactions 135


4.8 Reaction Center Perception 138


4.9 Reaction Classification 139


4.9.1 Model-Driven Approaches 139


4.9.1.1 Ugi’s Scheme and Some Follow-Ups 140


4.9.1.2 Info Chem’s Reaction Classification 143


4.9.2 Data-Driven Approaches 145


4.9.2.1 HORACE 145


4.9.2.2 Reaction Landscapes 146


4.10 Stereochemistry of Reactions 148


4.11 Reaction Networks 149


Selected Reading 151


References 152


5 The Data 155


5.1 Introduction 155


5.2 Data Types 156


5.2.1 Numerical Data 157


5.2.2 Molecular Structures 159


5.2.3 Bit Vectors 160


5.2.3.1 Hash Codes 160


5.2.3.2 Structural Keys 162


5.2.3.3 Fingerprints 163


5.2.4 Chemical Reactions 164


5.2.5 Molecular Spectra 165


5.3 Storage and Manipulation of Data 169


5.3.1 Experimental Data 169


5.3.1.1 Types of Data on Properties 170


5.3.1.2 Accuracy of the Data 170


5.3.2 Data Storage and Exchange 171


5.3.2.1 DAT File 171


5.3.2.2 JCAMP-DX 171


5.3.2.3 Predictive Model Markup Language (PMML) 172


5.3.3 Real-World Data 173


5.3.3.1 Data Complexity 173


5.3.3.2 Outliers and Redundant Objects 174


5.3.4 Data Transformation 175


5.3.4.1 Fast Fourier Transformation 175


5.3.4.2 Wavelet Transformation 175


5.3.5 Preparation of Datasets for Building of Models and Validations of Their Quality 176


5.4 Conclusions 177


Selected Reading 178


References 179


6 Databases and Data Sources in Chemistry 185
Engelbert Zass and Thomas Engel


6.1 Introduction 185


6.2 Chemical Literature and Databases 186


6.2.1 Classification of Chemical Literature 186


6.2.2 The Origin of Chemical Databases 187


6.2.3 Evolution of Database Systems and User Interfaces 187


6.3 Major Chemical Database Systems 188


6.3.1 Sci Finder 188


6.3.2 Reaxys 189


6.3.3 Sci Finder versus Reaxys 190


6.4 Compound Databases 191


6.4.1 2D Structures 191


6.4.1.1 Searching Organic Compounds 192


6.4.1.2 Searching Inorganic and Coordination Compounds 194


6.4.2 Sequences of Biopolymers 195


6.4.3 3D Structures 198


6.4.4 Catalog Databases 200


6.5 Databases with Properties of Compounds 200


6.5.1 Physical Properties 201


6.5.2 Thermodynamic and Thermochemical Data 202


6.5.3 Spectra 204


6.5.3.1 Spectroscopic Databases 205


6.5.3.2 Compound Databases with Spectroscopic Information 205


6.5.4 Biological, Environmental, and Safety Information Sources 206


6.5.4.1 Biological Information 207


6.5.4.2 Pharmaceutical and Medical Information 208


6.5.4.3 Toxicity, Environmental, and Safety Information 209


6.6 Reaction Databases 210


6.6.1 Comprehensive Reaction Databases 210


6.6.2 Synthetic Methodology Databases 212


6.7 Bibliographic and Citation Databases 212


6.7.1 Bibliographic Databases 213


6.7.1.1 Special Bibliographic Databases 213


6.7.1.2 Patent Bibliographic Databases 214


6.7.1.3 Searching Bibliographic Databases 216


6.7.1.4 Linking to Full Text 216


6.7.2 Citation Databases 217


6.7.2.1 General Citation Databases 218


6.7.2.2 Patent Citation Databases 219


6.8 Full-Text Databases 219


6.8.1 Electronic Journals 219


6.8.2 Patents 220


6.8.3 Lexika and Encyclopedias 221


6.9 Architecture of a Structure-Searchable Database 222


Selected Reading 224


References 224


7 Searching Chemical Structures 231
Nikolay Kochev, Valentin Monev, and Ivan Bangov


7.1 Introduction 231


7.2 Full Structure Search 232


7.3 Substructure Search 235


7.3.1 Basic Concepts 235


7.3.2 Backtracking Algorithm 236


7.3.3 Optimization of the Backtracking Algorithm 238


7.3.4 Screening 239


7.3.5 Superstructure Searching 241


7.3.6 Automorphism Searching 241


7.3.7 Maximum Common Substructure Searching 242


7.3.8 Specific Line Notations for Substructure Searching 243


7.3.9 Chemotypes for Database Searching 244


7.4 Similarity Search 245


7.4.1 Similarity Basics 245


7.4.2 Similarity Measures 247


7.4.3 Descriptor Selection and Coding 249


7.4.4 Similarity Measures Based on Maximum Common Substructure 250


7.5 Three-Dimensional Structure Search Methods 250


7.5.1 Pharmacophore Searching 251


7.5.2 3D Similarity Searching 252


7.6 Sequence Searching in Protein and Nucleic Acid Databases 254


7.6.1 Sequence Similarity Definition 255


7.6.2 Dynamic Programming Algorithm 256


7.6.3 Fast Sequence Searching in Large Databases 258


7.7 Summary 259


Selected Reading 261


References 262


8 Computational Chemistry 267


8.1 Empirical Approaches to the Calculation of Properties 269
Johann Gasteiger


8.1.1 Introduction 269


8.1.2 Additivity of Atomic Contributions 269


8.1.3 Attenuation Models 271


8.1.3.1 Calculation of Charge Distribution 271


8.1.3.2 Polarizability Effect 275


Selected Reading 277


References 277


8.2 Molecular Mechanics 279
Harald Lanig


8.2.1 Introduction 279


8.2.2 No Force Field Calculation without Atom Types 280


8.2.3 The Functional Form of Common Force Fields 281


8.2.3.1 Bond Stretching 282


8.2.3.2 Angle Bending 283


8.2.3.3 Torsional Terms 284


8.2.3.4 Out-of-Plane Bending 285


8.2.3.5 Electrostatic Interactions 286


8.2.3.6 Van der Waals Interactions 287


8.2.3.7 Cross Terms 289


8.2.3.8 Advanced Interatomic Potentials and Future Development 290


8.2.4 Available Force Fields 291


8.2.4.1 Force Fields for Small Molecules 292


8.2.4.2 Force Fields for Biomolecules 293


Selected Readings 296


References 296


8.3 Molecular Dynamics 301
Harald Lanig


8.3.1 Introduction 301


8.3.2 The Continuous Movement of Molecules 302


8.3.3 Methods 302


8.3.3.1 Algorithms 303


8.3.3.2 Ways for Speeding up the Calculations 304


8.3.3.3 Solvent Effects 305


8.3.3.4 Periodic Boundary Conditions 308


8.3.4 Constant Energy, Temperature, or Pressure? 308


8.3.5 Long-Range Forces 310


8.3.6 Application of Molecular Dynamics Techniques 311


8.3.7 Future Perspectives 315


Selected Readings 317


References 317


8.4 Quantum Mechanics 320
Tim Clark


8.4.1 Hückel Molecular Orbital Theory 320


8.4.2 Semiempirical MO Theory 324


8.4.3 Ab Initio Molecular Orbital Theory 327


8.4.4 Density Functional Theory 332


8.4.5 Properties from Quantum Mechanical Calculations 334


8.4.5.1 Net Atomic Charges 334


8.4.5.2 Dipole and Higher Multipole Moments 335


8.4.5.3 Polarizabilities 335


8.4.5.4 Orbital Energies 336


8.4.5.5 Surface Descriptors 336


8.4.5.6 Local Ionization Potential 336


8.4.6 Quantum Mechanical Techniques for Very Largen Molecules 337


8.4.6.1 Linear Scaling Methods 337


8.4.6.2 Hybrid QM/MM Calculations 338


8.4.7 The Future of Quantum Mechanical Methods in Chemoinformatics 338


Selected Reading 340


References 341


9 Modeling and Prediction of Properties (QSPR/QSAR) 345
Johann Gasteiger


10 Calculation of Structure Descriptors 349
Lothar Terfloth and Johann Gasteiger


10.1 Introduction 349


10.1.1 QSPR/QSAR Modeling 349


10.1.2 Overview 349


10.1.3 Classification of Compounds and Similarity Searching 350


10.1.4 Definition of the Terms “Structure Descriptor” and “Molecular Descriptor” 351


10.1.5 Classification of Structure Descriptors 351


10.1.6 Structure Descriptors with a Fixed Length 351


10.2 Structure Descriptors for Classification and Similarity Searching 352


10.2.1 2D Structure Descriptors (Topological Descriptors) 352


10.2.1.1 Structural Keys 352


10.2.1.2 Fingerprints 353


10.2.1.3 Distance and Similarity Measures 354


10.2.1.4 Chemotypes: Data Mining for Compounds with Structural Features 356


10.2.1.5 Multilevel Neighborhoods of Atoms 358


10.2.1.6 Descriptors from Shannon Entropy Calculations 359


10.2.1.7 Chemically Advanced Template Search (CATS2D) Descriptors 360


10.2.1.8 Descriptors from Chemical Bond Information 360


10.2.2 3D Descriptors 361


10.2.2.1 Geometric Atom Pair Descriptors 361


10.2.2.2 CATS3D and CHARGE3D 361


10.2.2.3 Pharmacophores 362


10.2.3 Field-Based Molecular Similarity 362


10.2.3.1 Electron Density 362


10.2.3.2 General Field-Based Similarity Indices 363


10.3 Structure Descriptors for Quantitative Modeling 363


10.3.1 0-D Molecular Descriptors 363


10.3.2 1D Molecular Descriptors 363


10.3.3 2D Molecular Descriptors (Topological Descriptors) 365


10.3.3.1 Single-Valued Descriptors 365


10.3.3.2 Topological Descriptors as Vectors 366


10.3.4 3D Descriptors 369


10.3.4.1 3D Structure Generation 369


10.3.4.2 3D Autocorrelation Vector 370


10.3.4.3 3D Molecule Representation of Structures Based on Electron Diffraction Code (3D Mo RSE Code) 370


10.3.4.4 Radial Distribution Function Code 371


10.3.4.5 Other 3D Descriptors 375


10.3.5 Chirality Descriptors 375


10.3.5.1 Chirality Codes 376


10.3.5.2 Conformation-Independent Chirality Code (CICC) 376


10.3.5.3 Conformation-Dependent Chirality Code (CDCC) 377


10.3.5.4 Descriptors of Molecular Shape and Molecular Surfaces 377


10.3.5.5 Global Shape Descriptors 378


10.3.5.6 Autocorrelation of Molecular Surface Properties 378


10.3.5.7 2D Maps of Molecular Surfaces 379


10.3.5.8 Charged Partial Surface Area 382


10.3.6 Field-Based Methods 383


10.3.6.1 Comparative Molecular Field Analysis (Co MFA) 383


10.3.6.2 Comparative Molecular Similarity Analysis (Co MSIA) 384


10.3.6.3 3D Molecular Interaction Fields 384


10.3.7 Descriptors for an Ensemble of Conformations (4D Descriptors) 384


10.3.7.1 4D-QSAR 384


10.3.8 Quantum Chemical Descriptors 385


10.4 Descriptors That Are Not Calculated from the Chemical Structure 385


10.5 Summary and Outlook 387


Selected Reading 390


References 390


11 Data Analysis and Data Handling (QSPR/QSAR) 397


11.1 Methods for Multivariate Data Analysis 399
Kurt Varmuza


11.1.1 Introduction into Multivariate Data Analysis 399


11.1.1.1 Aims 399


11.1.1.2 Notation and Symbols 400


11.1.2 Basics of Statistical Data Evaluation 401


11.1.2.1 Data Distribution, Central Value, and Spread 401


11.1.2.2 Correlation 404


11.1.2.3 Discrimination 405


11.1.3 Multivariate Data 406


11.1.3.1 Overview 406


11.1.3.2 Preprocessing 407


11.1.3.3 Distances and Similarities 408


11.1.3.4 Linear Latent Variables 410


11.1.4 Evaluation of Empirical Models 412


11.1.4.1 Overview 412


11.1.4.2 Optimum Model Complexity 412


11.1.4.3 Performance Criteria for Calibration Models 413


11.1.4.4 Performance Criteria for Classification Models 414


11.1.4.5 Cross-Validation 415


11.1.4.6 Bootstrap 416


11.1.5 Exploration: Analyzing the Independent Variables 417


11.1.5.1 Overview 417


11.1.5.2 Principal Component Analysis (PCA) 417


11.1.5.3 Nonlinear Mapping 419


11.1.5.4 Cluster Analysis 419


11.1.5.5 Example: Exploratory Data Analysis of Mass Spectra from Meteorite Samples 421


11.1.6 Calibration: Building a Quantitative Model 423


11.1.6.1 Overview 423


11.1.6.2 Ordinary Least Squares (OLS) Regression 424


11.1.6.3 Principal Component Regression (PCR) 424


11.1.6.4 Partial Least Squares (PLS) Regression 425


11.1.6.5 Variable Selection 426


11.1.6.6 Example: Prediction of Gas Chromatographic Retention Indices for Polycyclic Aromatic Hydrocarbons 427


11.1.7 Classification: Discriminating Samples 428


11.1.7.1 Overview 428


11.1.7.2 Linear Discriminant Analysis (LDA) 430


11.1.7.3 Discriminant Partial Least Squares (D-PLS) Analysis 430


11.1.7.4 k-Nearest Neighbor (KNN) Classification 430


11.1.7.5 Support Vector Machine (SVM) 431


11.1.7.6 Classification Trees (CART) 432


11.1.7.7 Example: Classification of Meteorite Samples Using Mass Spectral Data 432


Acknowledgements 434


Selected Reading 435


References 435


11.2 Artificial Neural Networks (ANNs) 438
Jure Zupan


11.2.1 How to Learn a New Method? 438


11.2.2 Multivariate Representation of Data 439


11.2.3 Overview of Artificial Neural Networks (ANNs) 442


11.2.4 Error Back-Propagation ANNs 443


11.2.5 Kohonen and Counter-Propagation ANN 445


11.2.6 Training of the ANN: Adapting the Weights 448


11.2.7 Controlling Model Complexity and Optimizing Predictivity 450


11.2.8 Few General Remarks about ANNs 450


Selected Reading 451


References 451


11.3 Deep and Shallow Neural Networks 453
David A. Winkler


11.3.1 Drug Design in the Era of Big Data and Artificial Intelligence (AI) 453


11.3.2 Deep Learning 454


11.3.3 Controlling Model Complexity and Optimizing Predictivity Using Regularization 455


11.3.4 Universal Approximation Theorem 458


11.3.5 Do QSAR Models Generated by Neural Networks Meet the Requirements of the Universal Approximation Theorem? 458


11.3.6 Comparison of the Performance of Deep and Shallow Regularized Neural Networks on Drug Datasets 459


11.3.7 A Few General Remarks about Neural Networks for Drug Discovery 460


Selected Reading 462


References 462


12 QSAR/QSPR Revisited 465
Alexander Golbraikh and Alexander Tropsha


12.1 Best Practices of QSAR Modeling 466


12.1.1 Introduction 466


12.1.2 Key Concepts 467


12.1.3 Predictive QSAR Modeling Workflow 468


12.1.4 Dataset Curation 469


12.1.5 Modelability Studies 470


12.1.6 Development of QSAR Models: Internal and External Validation 471


12.1.7 Prediction Accuracy Criteria for QSAR Models for a Continuous Response Variable 472


12.1.8 Prediction Accuracy Criteria for Category QSAR Models 473


12.1.9 Time-Split Validation 475


12.1.10 Validation by Y-Randomization 475


12.1.11 Applicability Domain of QSAR Models 475


12.1.11.1 Leverage AD for Regression QSAR Models 476


12.1.11.2 Residual Standard Deviation (RSD) as AD 476


12.1.11.3 Other widely Used ADs 476


12.1.12 Ensemble Modeling 478


12.1.13 Model Interpretation: Structural Alerts 478


12.1.14 Virtual Screening 479


12.1.15 Conclusions 480


12.2 The Data Science of QSAR Modeling 480


12.2.1 Introduction 480


12.2.2 Data Curation: Trust but Verify! 482


12.2.3 Models as Decision Support Tools 487


12.2.4 Conclusions 487


Selected Reading 489


References 489


13 Bioinformatics 497
Heinrich Sticht


13.1 Introduction 497


13.2 Sequence Databases 499


13.2.1 Gen Bank 499


13.2.2 Uni Prot 501


13.3 Searching Sequence Databases 502


13.3.1 Tools for Sequence Database Searches 503


13.3.2 Scoring Matrices 503


13.3.3 Interpretation of the Results of a Database Search 507


13.4 Characterization of Protein Families 509


13.4.1 Multiple Sequence Alignment 509


13.4.2 Sequence Signatures 512


13.5 Homology Modeling 515


Selected Reading 520


References 520


14 Future Directions 525
Johann Gasteiger


14.1 Access to Chemical Information 525


14.2 Representation of Chemical Compounds 527


14.3 Representation of Chemical Reactions 527


14.4 Learning from Chemical Information 528


14.5 Training in Chemoinformatics 529


Answers Section 531


Index 555

Om författaren

Johann Gasteiger is Professor emeritus of Chemistry at the University of Erlangen-Nuremberg, Germany and the co-founder of ’Computer-Chemie-Centrum’. He has received numerous awards and is a member of several societies and editorial boards. His research interests are in the development of software for drug design, simulation of chemical reactions, organic synthesis design, simulation of spectra, and chemical information processing by neural networks and genetic algorithms.

Thomas Engel is is coordinator at the Department of Chemistry and Biochemistry of the Ludwig-Maximilians-Universitat in Munich, Germany. He received his academic degrees at the University of Wurzburg. Since 2001 he is lecturer at various universities promoting and establishing courses in scientific computing. He is also a member of the Chemistry-Information-Computer section (CIC) of the GDCh and the Molecular Graphics and Modeling Society (German section).
Köp den här e-boken och få 1 till GRATIS!
Språk Engelska ● Formatera EPUB ● ISBN 9783527693788 ● Filstorlek 20.1 MB ● Redaktör Thomas Engel & Johann Gasteiger ● Utgivare Wiley-VCH Verlag GmbH & Co. KGaA ● Land DE ● Publicerad 2018 ● Utgåva 1 ● Nedladdningsbara 24 månader ● Valuta EUR ● ID 6668337 ● Kopieringsskydd Adobe DRM
Kräver en DRM-kapabel e-läsare

Fler e-böcker från samma författare (r) / Redaktör

27 717 E-böcker i denna kategori