Charlotte Wahl 
Noncommutative Maslov Index and Eta-Forms [PDF ebook] 

สนับสนุน

The author defines and proves a noncommutative generalization of a formula relating the Maslov index of a triple of Lagrangian subspaces of a symplectic vector space to eta-invariants associated to a pair of Lagrangian subspaces. The noncommutative Maslov index, defined for modules over a $C^*$-algebra $/mathcal{A}$, is an element in $K_0(/mathcal{A})$. The generalized formula calculates its Chern character in the de Rham homology of certain dense subalgebras of $/mathcal{A}$. The proof is a noncommutative Atiyah-Patodi-Singer index theorem for a particular Dirac operator twisted by an $/mathcal{A}$-vector bundle. The author develops an analytic framework for this type of index problem.

€103.46
วิธีการชำระเงิน
ซื้อ eBook เล่มนี้และรับฟรีอีก 1 เล่ม!
รูป PDF ● หน้า 118 ● ISBN 9781470404918 ● สำนักพิมพ์ American Mathematical Society ● ที่สามารถดาวน์โหลดได้ 3 ครั้ง ● เงินตรา EUR ● ID 6613077 ● ป้องกันการคัดลอก Adobe DRM
ต้องใช้เครื่องอ่านหนังสืออิเล็กทรอนิกส์ที่มีความสามารถ DRM

หนังสืออิเล็กทรอนิกส์เพิ่มเติมจากผู้แต่งคนเดียวกัน / บรรณาธิการ

48,927 หนังสืออิเล็กทรอนิกส์ในหมวดหมู่นี้