Jean Bourgain 
Green’s Function Estimates for Lattice Schrödinger Operators and Applications [PDF ebook] 

สนับสนุน

This book presents an overview of recent developments in the area of localization for quasi-periodic lattice Schrödinger operators and the theory of quasi-periodicity in Hamiltonian evolution equations. The physical motivation of these models extends back to the works of Rudolph Peierls and Douglas R. Hofstadter, and the models themselves have been a focus of mathematical research for two decades. Jean Bourgain here sets forth the results and techniques that have been discovered in the last few years. He puts special emphasis on so-called ‘non-perturbative’ methods and the important role of subharmonic function theory and semi-algebraic set methods. He describes various applications to the theory of differential equations and dynamical systems, in particular to the quantum kicked rotor and KAM theory for nonlinear Hamiltonian evolution equations.
Intended primarily for graduate students and researchers in the general area of dynamical systems and mathematical physics, the book provides a coherent account of a large body of work that is presently scattered in the literature. It does so in a refreshingly contained manner that seeks to convey the present technological ‘state of the art.’

€89.99
วิธีการชำระเงิน

เกี่ยวกับผู้แต่ง

Jean Bourgain is Professor of Mathematics at the Institute for Advanced Study and J. Doob Professor of Mathematics at the University of Illinois, Urbana-Champaign. He is the author of
Global Solutions of Nonlinear Schrödinger Equations.

ซื้อ eBook เล่มนี้และรับฟรีอีก 1 เล่ม!
ภาษา อังกฤษ ● รูป PDF ● หน้า 200 ● ISBN 9781400837144 ● ขนาดไฟล์ 2.1 MB ● สำนักพิมพ์ Princeton University Press ● เมือง Princeton ● ประเทศ US ● การตีพิมพ์ 2004 ● ที่สามารถดาวน์โหลดได้ 24 เดือน ● เงินตรา EUR ● ID 5489343 ● ป้องกันการคัดลอก Adobe DRM
ต้องใช้เครื่องอ่านหนังสืออิเล็กทรอนิกส์ที่มีความสามารถ DRM

หนังสืออิเล็กทรอนิกส์เพิ่มเติมจากผู้แต่งคนเดียวกัน / บรรณาธิการ

50,053 หนังสืออิเล็กทรอนิกส์ในหมวดหมู่นี้