Let $N/in/mathbb{N}$, $N/geq2$, be given. Motivated by wavelet analysis, we consider a class of normal representations of the $C^{/ast}$-algebra $/mathfrak{A}_{N}$ on two unitary generators $U$, $V$ subject to the relation $UVU^{-1}=V^{N}$. The representations are in one-to-one correspondence with solutions $h/in L^{1}/left(/mathbb{T}/right)$, $h/geq0$, to $R/left(h/right)=h$ where $R$ is a certain transfer operator (positivity-preserving) which was studied previously by D. Ruelle. The representations of $/mathfrak{A}_{N}$ may also be viewed as representations of a certain (discrete) $N$-adic $ax+b$ group which was considered recently by J.-B. Bost and A. Connes.
ซื้อ eBook เล่มนี้และรับฟรีอีก 1 เล่ม!
รูป PDF ● หน้า 60 ● ISBN 9781470403133 ● สำนักพิมพ์ American Mathematical Society ● ที่สามารถดาวน์โหลดได้ 3 ครั้ง ● เงินตรา EUR ● ID 6612917 ● ป้องกันการคัดลอก Adobe DRM
ต้องใช้เครื่องอ่านหนังสืออิเล็กทรอนิกส์ที่มีความสามารถ DRM