Pei-Chu Hu & Chung-Chun Yang 
Differentiable and Complex Dynamics of Several Variables [PDF ebook] 

สนับสนุน

The development of dynamics theory began with the work of Isaac Newton. In his theory the most basic law of classical mechanics is f = ma, which describes the motion n in IR. of a point of mass m under the action of a force f by giving the acceleration a. If n the position of the point is taken to be a point x E IR. , and if the force f is supposed to be a function of x only, Newton’s Law is a description in terms of a second-order ordinary differential equation: J2x m dt = f(x). 2 It makes sense to reduce the equations to first order by defining the velo city as an extra n independent variable by v = :i; = ~~ E IR. . Then x = v, mv = f(x). L. Euler, J. L. Lagrange and others studied mechanics by means of an analytical method called analytical dynamics. Whenever the force f is represented by a gradient vector field f = – /l U of the potential energy U, and denotes the difference of the kinetic energy and the potential energy by 1 L(x, v) = 2’m(v, v) – U(x), the Newton equation of motion is reduced to the Euler-Lagrange equation ~~ are used as the variables, the Euler-Lagrange equation can be If the momenta y written as . 8L y= 8x’ Further, W. R.

€57.99
วิธีการชำระเงิน
ซื้อ eBook เล่มนี้และรับฟรีอีก 1 เล่ม!
ภาษา อังกฤษ ● รูป PDF ● ISBN 9789401592994 ● สำนักพิมพ์ Springer Netherlands ● การตีพิมพ์ 2013 ● ที่สามารถดาวน์โหลดได้ 3 ครั้ง ● เงินตรา EUR ● ID 4698300 ● ป้องกันการคัดลอก Adobe DRM
ต้องใช้เครื่องอ่านหนังสืออิเล็กทรอนิกส์ที่มีความสามารถ DRM

หนังสืออิเล็กทรอนิกส์เพิ่มเติมจากผู้แต่งคนเดียวกัน / บรรณาธิการ

48,721 หนังสืออิเล็กทรอนิกส์ในหมวดหมู่นี้