Wolfgang Kühnel 
Differentialgeometrie [PDF ebook] 
Kurven – Flächen – Mannigfaltigkeiten

Destek

Dieses Buch ist eine Einführung in die Differentialgeometrie und ein passender Begleiter zum Differentialgeometrie-Modul (ein- und zweisemestrig). Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel ‘Die innere Geometrie von Flächen’. Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über ‘Einstein-Räume’, die eine große Bedeutung sowohl in der ‘Reinen Mathematik’ als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird.  Bei der Neuauflage wurden einige zusätzliche Lösungen zu den Übungsaufgaben ergänzt.

€24.99
Ödeme metodları

İçerik tablosu

Bezeichnungen sowie Hilfsmittel aus der Analysis.- Kurven im IRn.- Lokale Flächentheorie, insbes. Drehflächen, Regelflächen, Minimalflächen.- Die innere Geometrie von Flächen.- Riemannsche Mannigfaltigkeiten.- Der Krümmungstensor.- Räume konstanter Krümmung.- Einstein-Räume.- Lösungen zu Übungsaufgaben.

Yazar hakkında

Wolfgang Kühnel ist Professor am Mathematischen Institut der Universität Stuttgart.

Bu e-kitabı satın alın ve 1 tane daha ÜCRETSİZ kazanın!
Dil Almanca ● Biçim PDF ● Sayfalar 284 ● ISBN 9783658006150 ● Yayımcı Springer Fachmedien Wiesbaden GmbH ● Kent Wiesbaden ● Ülke DE ● Yayınlanan 2012 ● Baskı 6 ● İndirilebilir 24 aylar ● Döviz EUR ● Kimlik 2666135 ● Kopya koruma Adobe DRM
DRM özellikli bir e-kitap okuyucu gerektirir

Aynı yazardan daha fazla e-kitap / Editör

958 Bu kategorideki e-kitaplar

Franz Rothe: A Course in Old and New Geometry : Volume V
The present fifth volume  recalls Hilbert’s axioms from the Foundations of 
') jQuery('#virelinsocial').html('
'); jQuery('.virelinsocial-link').css('display','block').css('margin','0px').css('margin-bottom','5px'); jQuery('#virelinsocial').show(); }); // end of document ready // END wait until jQuery is available } }, 30); })();