Locally symmetric spaces are generalizations of spaces of constant curvature. In this book the author presents the proof of a remarkable phenomenon, which he calls ‘strong rigidity’: this is a stronger form of the deformation rigidity that has been investigated by Selberg, Calabi-Vesentini, Weil, Borel, and Raghunathan.
The proof combines the theory of semi-simple Lie groups, discrete subgroups, the geometry of E. Cartan’s symmetric Riemannian spaces, elements of ergodic theory, and the fundamental theorem of projective geometry as applied to Tit’s geometries. In his proof the author introduces two new notions having independent interest: one is ‘pseudo-isometries’; the other is a notion of a quasi-conformal mapping over the division algebra K (K equals real, complex, quaternion, or Cayley numbers). The author attempts to make the account accessible to readers with diverse backgrounds, and the book contains capsule descriptions of the various theories that enter the proof.
G. Daniel Mostow
Strong Rigidity of Locally Symmetric Spaces. (AM-78), Volume 78 [PDF ebook]
Strong Rigidity of Locally Symmetric Spaces. (AM-78), Volume 78 [PDF ebook]
Придбайте цю електронну книгу та отримайте ще 1 БЕЗКОШТОВНО!
Мова Англійська ● Формат PDF ● Сторінки 204 ● ISBN 9781400881833 ● Розмір файлу 6.5 MB ● Видавець Princeton University Press ● Місто Princeton ● Країна US ● Опубліковано 2016 ● Завантажувані 24 місяців ● Валюта EUR ● Посвідчення особи 4945325 ● Захист від копіювання Adobe DRM
Потрібен читач електронних книг, що підтримує DRM