This book presents the state of the art in the field of mobile and wireless networks, and anticipates the arrival of new standards and architectures. It focuses on wireless networks, starting with small personal area networks and progressing onto the very large cells of wireless regional area networks, via local area networks dominated by Wi Fi technology, and finally metropolitan networks. After a description of the existing 2G and 3G standards, with LTE being the latest release, LTE-A is addressed, which is the first 4G release, and a first indication of 5G is provided as seen through the standardizing bodies. 4G technology is described in detail along with the different LTE extensions related to the massive arrival of femtocells, the increase to a 1 Gbps capacity, and relay techniques. 5G is also discussed in order to show what can be expected in the near future.
The Internet of Things is explained in a specific chapter due to its omnipresence in the literature, ad hoc and mesh networks form another important chapter as they have made a comeback after a long period of near hibernation, and the final chapter discusses a particularly recent topic: Mobile-Edge Computing (MEC) servers.
Зміст
Preface xiii
List of Acronyms xvii
Chapter 1. Introduction to Mobile and Networks 1
1.1. Mobile and wireless generation networks 2
1.1.1. First generation mobile technology: 1G 2
1.1.2. Second generation mobile technology: 2G 3
1.1.3. Third generation mobile technology: 3G 4
1.1.4. Fourth generation mobile technology: 4G 5
1.1.5. Fifth generation mobile technology: 5G 7
1.2. IEEE technologies 7
1.2.1. IEEE 802.15: WPAN 8
1.2.2. IEEE 802.11: WLAN 8
1.2.3. IEEE 802.16: WMAN 9
1.2.4. IEEE 802.21: MIHS 10
1.2.5. IEEE 802.22: WRAN 10
1.3. Conclusion 11
1.4. Bibliography 11
1.4.1. Standards 11
1.4.2. Selected bibliography 12
1.4.3. Websites 13
Chapter 2. Mobile Networks 15
2.1. Cellular network 16
2.1.1. Radio interface 17
2.1.2. Cell design 19
2.1.3. Traffic engineering 20
2.2. Principles of cellular network functionalities 21
2.3. 1G networks 23
2.4. 2G networks 23
2.5. 3G networks 25
2.6. 4G networks 27
2.7. 5G networks 29
2.8. Bibliography 30
Chapter 3. Long-Term Evolution 35
3.1. Relevant features of LTE 36
3.2. Network architecture and protocols 39
3.2.1. Architecture reference model 40
3.2.2. Functional description of a LTE network 41
3.2.3. System architecture evolution 44
3.2.4. Reference points 46
3.3. Control and user planes 48
3.3.1. User plane 48
3.3.2. GPRS tunneling protocol 50
3.3.3. Control plane 52
3.4. Multimedia broadcast and multicast service 53
3.5. Stream Control Transmission Protocol 54
3.6. Network discovery and selection 55
3.7. Radio resource management 56
3.8. Authentication and authorization 58
3.8.1. User authentication, key agreement and key generation 59
3.8.2. Signaling and user-plane security 61
3.9. Fundamentals of the MAC layer in LTE 61
3.9.1. Traffic classes and quality of service 61
3.9.2. Mobility 62
3.9.3. Resource scheduling algorithms 63
3.10. Fundamentals of the LTE physical layer 64
3.10.1. Slot and frame structure in LTE OFDMA 64
3.10.2. Reference signals 68
3.11. Conclusion69
3.12. Bibliography 70
3.12.1. Standards 70
3.12.2. Selected bibliography 70
Chapter 4. Long-Term Evolution Advanced 73
4.1. Het Net in LTE Advanced 75
4.2. Small cell concepts 77
4.2.1. Picocell 77
4.2.2. Femtocells 78
4.2.3. Relays 78
4.3. Femtocell and macrocell integration architecture 79
4.4. Picocell and macrocell integration architecture 80
4.5. Interference mitigation in heterogeneous networks 81
4.5.1. Interference mitigation in the context of two-tier macrofemtocells 82
4.5.2. Frequency spectral assignment 82
4.6. Interference mitigation in the context of two-tier macropicocells 83
4.7. Coordinated multi-point transmission/reception 84
4.8. Carrier aggregation 85
4.9. LTE Advanced evolution toward 5G 86
4.10. Bibliography 87
4.10.1. Standards 87
4.10.2. Selected bibliography 87
4.10.3. Websites 88
Chapter 5. 5G 89
5.1. From LTE Advanced to 5G: the big transition 90
5.1.1. D2D communication 91
5.1.2. Green activities saving energy 92
5.1.3. LTE–Wi Fi integration for traffic offloading 92
5.1.4. Vehicular communication 93
5.2. Some characteristics envisioned for 5G 94
5.2.1. Massive capacity support 94
5.2.2. Ubiquitous communication support 94
5.2.3. Improvement in radio characteristics 94
5.3. 5G frequencies 95
5.4. High and low platforms 96
5.5. Cloud-RAN 98
5.6. Bibliography 101
5.6.1. Standard 101
5.6.2. Selected bibliography 101
5.6.3. Website 101
Chapter 6. Small Cells 103
6.1. Femtocell technology 105
6.2. LTE femtocell architecture 108
6.2.1. Home e NB or FAP 108
6.2.2. He NB gateway or FAP-GW 109
6.2.3. He NB management system or ACS 109
6.2.4. Security gateway 110
6.3. LTE femtocell deployment scenarios 110
6.4. Femtocell access control strategy 112
6.4.1. Closed subscriber group 112
6.4.2. Femtocell access control modes 113
6.4.3. Physical cell identity 113
6.5. LTE femtocell challenges and technical issues 114
6.5.1. Interference 114
6.5.2. Spectrum allocation 115
6.5.3. Access mode impact 117
6.6. Security and privacy challenges 117
6.7. Synchronization 120
6.8. Mobility 121
6.9. Passpoint 123
6.10. The backhaul network 126
6.11. Software radio and cognitive radio 128
6.12. Custom cells 129
6.13. Conclusion 130
6.14. Bibliography 131
6.14.1. Standards 131
6.14.2. Selected bibliography 131
6.14.3. Websites 133
Chapter 7. WPAN and Wi Gig 135
7.1. Wireless Personal Area Network 135
7.2. IEEE 802.15 136
7.3. Bluetooth 138
7.4. UWB 142
7.5. Wi Gig 147
7.6. Wirelesss HD 150
7.7. Conclusion 151
7.8. Bibliography 151
Chapter 8. WLAN and Wi Fi 153
8.1. IEEE 802.11 154
8.2. Wi Fi architecture 156
8.2.1. Physical layer 156
8.2.2. Data link layer 157
8.2.3. Access techniques 158
8.2.4. The CSMA/CA protocol 159
8.2.5. Handovers 162
8.2.6. Security 163
8.2.7. Wired Equivalent Privacy 164
8.2.8. WPA and IEEE 802.11i 167
8.3. Security and authentication 168
8.3.1. Scalability and flexibility 168
8.3.2. IEEE 802.11i 170
8.3.3. Trading security policy 170
8.4. Saving energy 172
8.5. IEEE 802.11a, b and g 174
8.5.1. IEEE 802.11b 175
8.5.2. IEEE 802.11a 176
8.5.3. IEEE 802.11n 176
8.5.4. IEEE 802.11ac 179
8.5.5. IEEE 802.11ad 182
8.5.6. IEEE 802.11af 183
8.5.7. IEEE 802.11ah 185
8.6. Conclusion 187
8.7. Bibliography 188
Chapter 9. WMAN and Wi MAX 191
9.1. Background on IEEE 802.16e 192
9.1.1. The medium access control layer 192
9.1.2. Channel access mechanism 193
9.1.3. Quality of service 194
9.1.4. Mobility support 195
9.2. The physical layer 195
9.2.1. Subchannelization in mobile Wi MAX: OFDMA 195
9.2.2. Slot and frame structure in OFDMA-based mobile Wi MAX 196
9.2.3. OFDMA slot structure in AMC permutation mode 198
9.3. An example of Wi MAX and Wi Fi integration 200
9.3.1. Qo S management 202
9.3.2. Qos support and classes 202
9.4. Mechanisms of channel access 203
9.4.1. Wi Fi access methods 204
9.4.2. Mobile Wi MAX access method 205
9.4.3. Handover support 206
9.5. IEEE 802.16m or mesh for Wi MAX 206
9.6. IEEE 802.16h or cognitive radio for Wi MAX 207
9.6.1. Uncoordinated coexistence mechanism 208
9.6.2. Coordinated coexistence mechanism 209
9.7. Bibliography 210
9.7.1. Standards 210
9.7.2. Selected bibliography 210
Chapter 10. WRAN and Interconnection 213
10.1. IEEE 802.22 213
10.2. Interconnection between IEEE standards 216
10.2.1. IEEE 802.21 framework 217
10.2.2. IEEE 802.21 core architecture 218
10.3. Bibliography 220
10.3.1. Standards 220
10.3.2. Selected bibliography 220
Chapter 11. Internet of Things 223
11.1. Sensor networks 224
11.2. RFID 226
11.2.1. Using RFID 228
11.2.2. EPC global 229
11.2.3. RFID security 231
11.2.4. Mifare 231
11.3. Near-field communication 232
11.3.1. Mobile key 233
11.3.2. NFC payment 234
11.3.3. The Internet of Things in a medical environment 236
11.4. The Internet of Things in the home 237
11.5. Fog networking 238
11.6. Connection of things 240
11.6.1. Specific proprietary solution: SIGFOX example 241
11.6.2. Lo Ra 242
11.7. Conclusion 245
11.8. Bibliography 245
Chapter 12. Ad Hoc and Mesh Networks 247
12.1. Ad hoc networks 248
12.2. Routing 250
12.2.1. Ad hoc in the link layer 253
12.2.2. Ad hoc mode in Wi Fi 253
12.2.3. Bluetooth link layer 256
12.3. Ad hoc routing protocols 258
12.3.1. Reactive protocols 261
12.3.2. Ad hoc on-demand distance vector 261
12.3.3. Dynamic source routing 262
12.4. Proactive protocols 263
12.4.1. Optimized link state routing protocol 263
12.4.2. Topology dissemination based on reverse-path forwarding 264
12.5. Quality of service in ad hoc networks 265
12.6. Models for Qo S in MANET 266
12.7. Mesh networks 270
12.8. VANET networks 273
12.9. Green PI: wearable Device2Device networks 274
12.9.1. Observation of traffic 276
12.9.2. Embedded Internet and 5G 277
12.9.3. Green PI: wearable and embedded Internet 278
12.9.4. Distributed TCP/IP 279
12.9.5. Wearable YOI 280
12.10. Bibligraphy 281
Chapter 13. Mobile-Edge Computing 283
13.1. Network virtualization 283
13.2. Network virtualization technology 285
13.2.1. Xen 286
13.2.2. Open Flow 288
13.3. Using network virtualization 292
13.3.1. Isolation 293
13.3.2. Extensive network virtualization 294
13.3.3. The Cloud 296
13.4. Mobile-edge computing 298
13.4.1. Use case 1: active device location tracking 299
13.4.2. Use case 2: augmented reality content delivery 300
13.4.3. Use case 3: video analytics 301
13.4.4. Use case 4: RAN-aware content optimization 301
13.4.5. Use case 5: distributed content and DNS caching 302
13.4.6. Use case 6: application-aware performance optimization 302
13.4.7. MEC server placement 303
13.5. Conclusion 305
13.6. Bibliography 305
Conclusion 307
Index 309
Про автора
Khaldoun Al Agha is the Co-founder and CEO of Green Communications. He is also Professor at the University of Paris-Sud in Orsay, France.
Guy Pujolle is currently Professor at University Pierre and Marie Curie in France and a distinguished Visiting Professor at UFRJ (University Federal of Rio de Janeiro) in Brazil.
Tara Ali-Yahiya is Associate Professor in the Laboratoire de Recherche en Informatique (Computer Science Research Laboratory) at the University of Paris-Sud in Orsay, France.