Since their introduction by Kolyvagin, Euler systems have been used in several important applications in arithmetic algebraic geometry. For a $p$-adic Galois module $T$, Kolyvagin’s machinery is designed to provide an upper bound for the size of the Selmer group associated to the Cartier dual $T^*$. Given an Euler system, Kolyvagin produces a collection of cohomology classes which he calls "derivative" classes. It is these derivative classes which are used to bound the dual Selmer group. The starting point of the present memoir is the observation that Kolyvagin’s systems of derivative classes satisfy stronger interrelations than have previously been recognized. We call a system of cohomology classes satisfying these stronger interrelations a Kolyvagin system. We show that the extra interrelations give Kolyvagin systems an interesting rigid structure which in many ways resembles (an enriched version of) the "leading term" of an $L$-function. By making use of the extra rigidity we also prove that Kolyvagin systems exist for many interesting representations for which no Euler system is known, and further that there are Kolyvagin systems for these representations which give rise to exact formulas for the size of the dual Selmer group, rather than just upper bounds.
Barry Mazur
Kolyvagin Systems [PDF ebook]
Kolyvagin Systems [PDF ebook]
Mua cuốn sách điện tử này và nhận thêm 1 cuốn MIỄN PHÍ!
định dạng PDF ● Trang 96 ● ISBN 9781470403973 ● Nhà xuất bản American Mathematical Society ● Có thể tải xuống 3 lần ● Tiền tệ EUR ● TÔI 6612994 ● Sao chép bảo vệ Adobe DRM
Yêu cầu trình đọc ebook có khả năng DRM