The author constructs knot invariants categorifying the quantum knot variants for all representations of quantum groups. He shows that these invariants coincide with previous invariants defined by Khovanov for $/mathfrak{sl}_2$ and $/mathfrak{sl}_3$ and by Mazorchuk-Stroppel and Sussan for $/mathfrak{sl}_n$. The author’s technique is to study 2-representations of 2-quantum groups (in the sense of Rouquier and Khovanov-Lauda) categorifying tensor products of irreducible representations. These are the representation categories of certain finite dimensional algebras with an explicit diagrammatic presentation, generalizing the cyclotomic quotient of the KLR algebra. When the Lie algebra under consideration is $/mathfrak{sl}_n$, the author shows that these categories agree with certain subcategories of parabolic category $/mathcal{O}$ for $/mathfrak{gl}_k$.
Ben Webster
Knot Invariants and Higher Representation Theory [PDF ebook]
Knot Invariants and Higher Representation Theory [PDF ebook]
Mua cuốn sách điện tử này và nhận thêm 1 cuốn MIỄN PHÍ!
định dạng PDF ● Trang 141 ● ISBN 9781470442064 ● Nhà xuất bản American Mathematical Society ● Có thể tải xuống 3 lần ● Tiền tệ EUR ● TÔI 8057225 ● Sao chép bảo vệ Adobe DRM
Yêu cầu trình đọc ebook có khả năng DRM