Debora Amadori & Laurent Gosse 
Error Estimates for Well-Balanced Schemes on Simple Balance Laws [PDF ebook] 
One-Dimensional Position-Dependent Models

Ủng hộ

This monograph presents, in an attractive and self-contained form, techniques based on the L1 stability theory derived at the end of the 1990s by A. Bressan, T.-P. Liu and T. Yang that yield original error estimates for so-called well-balanced numerical schemes solving 1D hyperbolic systems of balance laws. Rigorous error estimates are presented for both scalar balance laws and a position-dependent relaxation system, in inertial approximation. Such estimates shed light on why those algorithms based on source terms handled like ‘local scatterers’ can outperform other, more standard, numerical schemes. Two-dimensional Riemann problems for the linear wave equation are also solved, with discussion of the issues raised relating to the treatment of 2D balance laws. All of the material provided in this book is highly relevant for the understanding of well-balanced schemes and will contribute to future improvements.

€53.49
phương thức thanh toán

Mục lục

1 Introduction.- 2 Local and global error estimates.- 3 Position-dependent scalar balance laws.- 4 Lyapunov functional for inertial approximations.- 5 Entropy dissipation and comparison with Lyapunov estimates.- 6 Conclusion and outlook.

Mua cuốn sách điện tử này và nhận thêm 1 cuốn MIỄN PHÍ!
Ngôn ngữ Anh ● định dạng PDF ● Trang 110 ● ISBN 9783319247854 ● Kích thước tập tin 3.3 MB ● Nhà xuất bản Springer International Publishing ● Thành phố Cham ● Quốc gia CH ● Được phát hành 2015 ● Có thể tải xuống 24 tháng ● Tiền tệ EUR ● TÔI 4621875 ● Sao chép bảo vệ DRM xã hội

Thêm sách điện tử từ cùng một tác giả / Biên tập viên

2.207 Ebooks trong thể loại này