Glenn Shafer 
A Mathematical Theory of Evidence [PDF ebook] 

Ủng hộ

Both in science and in practical affairs we reason by combining facts only inconclusively supported by evidence. Building on an abstract understanding of this process of combination, this book constructs a new theory of epistemic probability. The theory draws on the work of A. P. Dempster but diverges from Depster’s viewpoint by identifying his ‘lower probabilities’ as epistemic probabilities and taking his rule for combining ‘upper and lower probabilities’ as fundamental.
The book opens with a critique of the well-known Bayesian theory of epistemic probability. It then proceeds to develop an alternative to the additive set functions and the rule of conditioning of the Bayesian theory: set functions that need only be what Choquet called ‘monotone of order of infinity.’ and Dempster’s rule for combining such set functions. This rule, together with the idea of ‘weights of evidence, ‘ leads to both an extensive new theory and a better understanding of the Bayesian theory. The book concludes with a brief treatment of statistical inference and a discussion of the limitations of epistemic probability. Appendices contain mathematical proofs, which are relatively elementary and seldom depend on mathematics more advanced that the binomial theorem.

€52.99
phương thức thanh toán

Giới thiệu về tác giả

Glenn Shafer is professor at Rutgers University and director of the Ph.D. program.

Mua cuốn sách điện tử này và nhận thêm 1 cuốn MIỄN PHÍ!
Ngôn ngữ Anh ● định dạng PDF ● Trang 314 ● ISBN 9780691214696 ● Kích thước tập tin 10.9 MB ● Nhà xuất bản Princeton University Press ● Thành phố Princeton ● Quốc gia US ● Được phát hành 2020 ● Có thể tải xuống 24 tháng ● Tiền tệ EUR ● TÔI 7442721 ● Sao chép bảo vệ Adobe DRM
Yêu cầu trình đọc ebook có khả năng DRM

Thêm sách điện tử từ cùng một tác giả / Biên tập viên

958 Ebooks trong thể loại này

Franz Rothe: A Course in Old and New Geometry : Volume V
The present fifth volume  recalls Hilbert’s axioms from the Foundations of 
') jQuery('#virelinsocial').html('
'); jQuery('.virelinsocial-link').css('display','block').css('margin','0px').css('margin-bottom','5px'); jQuery('#virelinsocial').show(); }); // end of document ready // END wait until jQuery is available } }, 30); })();