This book presents a collection of carefully refereed research articles and lecture notes stemming from the Conference ‘Automorphic Forms and L-Functions’, held at the University of Heidelberg in 2016.
The theory of automorphic forms and their associated L-functions is one of the central research areas in modern number theory, linking number theory, arithmetic geometry, representation theory, and complex analysis in many profound ways.
The 19 papers cover a wide range of topics within the scope of the conference, including automorphic L-functions and their special values, p-adic modular forms, Eisenstein series, Borcherds products, automorphic periods, and many more.
Mục lục
1. P. Anamby and S. Das: Sturm-like bound for square-free Fourier coefficients.- 2. N. Andersen, K. Bringmann and K. Rolen: Images of Maass-Poincaré series in the lower half-plane.- 3. S. Börcherer: On denominators of values of certain L-functions when twisted by characters.- 4. H. Darmon, A. Lauder, V. Rotger: First order p-adic deformations of weight one newforms.- 5. S. Ehlen, N-P. Skoruppa: Computing invariants of the Weil representation.- 6. W-T. Gan: The metaplectic tensor product as an instance of Langlands functoriality.- 7. M. Grados and A. von Pippich: On scattering constants of congruence subgroups.- 8. B. Kane and S.H. Man: The Bruinier-Funke pairing and the orthogonal complement of unary theta functions.- 9. W. Kohnen and J. Sengupta: Bounds for Fourier-Jacobi coefficients of Siegel cusp forms of degree two.- 10. Y. Li: Harmonic Eisenstein series of weight one.- 11. A. Pitale, S. Abhishek and R. Schmidt: A note on the growth of nearly holomorphic vector-valued Siegel modular forms.- 12. A. Raghuram and G. Sachdeva: Critical values of L-functions for GL3 x GL1 over a totally real field.- 13. M. Raum: Indecomposable Harish-Chandara modules for Jacobi groups.- 14. M. Rösner and R. Weissauer: Multiplicity one for certain paramodular forms of genus two.- 15. H.C. Siu and K. Soundararajan: Restrictions of Hecke eigenforms to horocycles.- 16. M. Woodbury: On the triple product formula: Real local calculations.- 17. C. Alfes-Neumann: An introduction to the theory of harmonic Maass forms.- 18. S. Börcherer: Elementary Introduction to p-adic Siegel Modular Forms.- 19. E. Hofmann: Liftings and Borcherds products.