- Comprehensive review of key technologies in precision agriculture, from proximal and remote sensing to decision support systems and variable rate technologies
- Surveys key applications of precision agriculture from controlled traffic farming to site-specific nutrient and water management
- Includes discussion of the economics of precision agriculture
Mục lục
Part 1 Information gathering and processing
1.Proximal crop sensing: Richard B. Ferguson, University of Nebraska-Lincoln, USA;
2.Proximal soil surveying and monitoring techniques: R. Gebbers, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Germany;
3.Airborne and satellite remote sensors for precision agriculture: Chenghai Yang, USDA-ARS, USA;
4.The use of unmanned aerial systems (UASs) in precision agriculture: Chunhua Zhang, Algoma University, Canada; and John M. Kovacs and Dan Walters, Nipissing University, Canada;
5.Key challenges and methods in identifying management zones: Spyros Fountas, Evangelos Anastasiou and Zisis Tsiropoulos, Agricultural University of Athens, Greece; Aristotelis Tagarakis, Bio Sense Institute – Research Institute for Information Technologies in Biosystems, Serbia; and Athanasios Balafoutis, Centre for Research and Technology Hellas, Institute of Bioeconomy & Agro-technology, Greece;
6.Modelling and decision support systems in precision agriculture: Nicolas Tremblay, Agriculture and Agri-Food Canada, Canada;
Part 2 Delivery systems
7.Variable-rate application technologies in precision agriculture: Ken Sudduth, USDA-ARS, USA; Aaron J. Franzen, South Dakota State University, USA; and Heping Zhu and Scott T. Drummond, USDA-ARS, USA;
8.Spray technologies in precision agriculture: Paul Miller, Silsoe Spray Applications Unit Ltd, UK;
9.Intelligent machinery for precision agriculture: Qin Zhang, Washington State University, USA; Joseph Dvorak, University of Kentucky, USA; and Timo Oksanen, Aalto University, Finland;
10.Controlled traffic farming in precision agriculture: Diogenes L. Antille, National Centre for Engineering in Agriculture, University of Southern Queensland, Australia; Tim Chamen, Controlled Traffic Farming Europe Ltd, UK; Jeff N. Tullberg, National Centre for Engineering in Agriculture, University of Southern Queensland, Australia; Bindi Isbister, Department of Primary Industries and Regional Development, Agriculture and Food, Australia; Troy A. Jensen, Guangnan Chen and Craig P. Baillie, National Centre for Engineering in Agriculture, University of Southern Queensland, Australia; and John K. Schueller, Department of Mechanical and Aerospace Engineering, University of Florida-Gainesville, USA;
Part 3 Applications
11.Precision tillage systems: Pedro Andrade-Sanchez, University of Arizona, USA; and Shrinivasa K. Upadhyaya, University of California-Davis, USA;
12.Variable-rate seeding systems for precision agriculture: John Fulton, The Ohio State University, USA;
13.Site-specific nutrient management systems: Dan S. Long, USDA-ARS, USA;
14.Site-specific irrigation systems: Amir Haghverdi, University of California-Riverside, USA; and Brian G. Leib, University of Tennessee-Knoxville, USA;
15.Precision crop protection systems: E. C. Oerke, University of Bonn, Germany;
16.Precision weed management systems: Roland Gerhards, University of Hohenheim, Germany;
17.Precision livestock farming and pasture management systems: Mark Trotter, Central Queensland University Institute for Future Farming Systems, Australia;
18.The economics of precision agriculture: James Lowenberg-De Boer, Harper Adams University, UK;
Giới thiệu về tác giả
Dr Troy Jensen is Associate Professor and Principal Research Fellow (Precision Agriculture) at the Centre for Agricultural Engineering, University of Southern Queensland, Australia. He has also been developing innovative market entry solutions to precision spot spraying and providing technologies to monitor crops at a very fine spatial and temporal scale, along with using his extensive agricultural experience to provide valuable post graduate student supervision.