Pei-Chu Hu & Ping Li 
Unicity of Meromorphic Mappings [PDF ebook] 

Ủng hộ

For a given meromorphic function I(z) and an arbitrary value a, Nevanlinna’s value distribution theory, which can be derived from the well known Poisson-Jensen for- mula, deals with relationships between the growth of the function and quantitative estimations of the roots of the equation: 1 (z) – a = O. In the 1920s as an application of the celebrated Nevanlinna’s value distribution theory of meromorphic functions, R. Nevanlinna [188] himself proved that for two nonconstant meromorphic func- tions I, 9 and five distinctive values ai (i = 1, 2, 3, 4, 5) in the extended plane, if 1 1- (ai) = g-l(ai) 1M (ignoring multiplicities) for i = 1, 2, 3, 4, 5, then 1 = g. Fur- 1 thermore, if 1- (ai) = g-l(ai) CM (counting multiplicities) for i = 1, 2, 3 and 4, then 1 = L(g), where L denotes a suitable Mobius transformation. Then in the 19708, F. Gross and C. C. Yang started to study the similar but more general questions of two functions that share sets of values. For instance, they proved that if 1 and 9 are two nonconstant entire functions and 8 , 82 and 83 are three distinctive finite sets such 1 1 that 1- (8 ) = g-1(8 ) CM for i = 1, 2, 3, then 1 = g.

€115.37
phương thức thanh toán
Mua cuốn sách điện tử này và nhận thêm 1 cuốn MIỄN PHÍ!
Ngôn ngữ Anh ● định dạng PDF ● ISBN 9781475737752 ● Nhà xuất bản Springer US ● Được phát hành 2013 ● Có thể tải xuống 3 lần ● Tiền tệ EUR ● TÔI 4605135 ● Sao chép bảo vệ Adobe DRM
Yêu cầu trình đọc ebook có khả năng DRM

Thêm sách điện tử từ cùng một tác giả / Biên tập viên

48.795 Ebooks trong thể loại này