Robert C. Gunning 
Lectures on Riemann Surfaces [PDF ebook] 
Jacobi Varieties

Ủng hộ

A sequel to Lectures on Riemann Surfaces (Mathematical Notes, 1966), this volume continues the discussion of the dimensions of spaces of holomorphic cross-sections of complex line bundles over compact Riemann surfaces. Whereas the earlier treatment was limited to results obtainable chiefly by one-dimensional methods, the more detailed analysis presented here requires the use of various properties of Jacobi varieties and of symmetric products of Riemann surfaces, and so serves as a further introduction to these topics as well.
The first chapter consists of a rather explicit description of a canonical basis for the Abelian differentials on a marked Riemann surface, and of the description of the canonical meromorphic differentials and the prime function of a marked Riemann surface. Chapter 2 treats Jacobi varieties of compact Riemann surfaces and various subvarieties that arise in determining the dimensions of spaces of holomorphic cross-sections of complex line bundles. In Chapter 3, the author discusses the relations between Jacobi varieties and symmetric products of Riemann surfaces relevant to the determination of dimensions of spaces of holomorphic cross-sections of complex line bundles. The final chapter derives Torelli’s theorem following A. Weil, but in an analytical context.
Originally published in 1973.
The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

€46.99
phương thức thanh toán
Mua cuốn sách điện tử này và nhận thêm 1 cuốn MIỄN PHÍ!
Ngôn ngữ Anh ● định dạng PDF ● Trang 198 ● ISBN 9781400872695 ● Kích thước tập tin 6.1 MB ● Nhà xuất bản Princeton University Press ● Thành phố Princeton ● Quốc gia US ● Được phát hành 2015 ● Có thể tải xuống 24 tháng ● Tiền tệ EUR ● TÔI 5491366 ● Sao chép bảo vệ Adobe DRM
Yêu cầu trình đọc ebook có khả năng DRM

Thêm sách điện tử từ cùng một tác giả / Biên tập viên

48.763 Ebooks trong thể loại này