This book is devoted to the theory of geometries which are locally Euclidean, in the sense that in small regions they are identical to the geometry of the Euclidean plane or Euclidean 3-space. Starting from the simplest examples, we proceed to develop a general theory of such geometries, based on their relation with discrete groups of motions of the Euclidean plane or 3-space; we also consider the relation between discrete groups of motions and crystallography. The description of locally Euclidean geometries of one type shows that these geometries are themselves naturally represented as the points of a new geometry. The systematic study of this new geometry leads us to 2-dimensional Lobachevsky geometry (also called non-Euclidean or hyperbolic geometry) which, following the logic of our study, is constructed starting from the properties of its group of motions. Thus in this book we would like to introduce the reader to a theory of geometries which are different from the usual Euclidean geometry of the plane and 3-space, in terms of examples which are accessible to a concrete and intuitive study. The basic method of study is the use of groups of motions, both discrete groups and the groups of motions of geometries. The book does not presuppose on the part of the reader any preliminary knowledge outside the limits of a school geometry course.
Viacheslav V. Nikulin & Igor R. Shafarevich
Geometries and Groups [PDF ebook]
Geometries and Groups [PDF ebook]
Mua cuốn sách điện tử này và nhận thêm 1 cuốn MIỄN PHÍ!
Ngôn ngữ Anh ● định dạng PDF ● ISBN 9783642615702 ● Phiên dịch M. Reid ● Nhà xuất bản Springer Berlin Heidelberg ● Được phát hành 2012 ● Có thể tải xuống 3 lần ● Tiền tệ EUR ● TÔI 6329123 ● Sao chép bảo vệ Adobe DRM
Yêu cầu trình đọc ebook có khả năng DRM