Space-based observations have transformed our understanding of Earth, its environment, the solar system and the universe at large. During past decades, driven by increasingly advanced science questions, space observatories have become more sophisticated and more complex, with costs often growing to billions of dollars. Although these kinds of ever-more-sophisticated missions will continue into the future, small satellites, ranging in mass between 500 kg to 0.1 kg, are gaining momentum as an additional means to address targeted science questions in a rapid, and possibly more affordable, manner. Within the category of small satellites, Cube Sats have emerged as a space-platform defined in terms of (10 cm x 10 cm x 10 cm)- sized cubic units of approximately 1.3 kg each called "U’s." Historically, Cube Sats were developed as training projects to expose students to the challenges of real-world engineering practices and system design. Yet, their use has rapidly spread within academia, industry, and government agencies both nationally and internationally.In particular, Cube Sats have caught the attention of parts of the U.S. space science community, which sees this platform, despite its inherent constraints, as a way to affordably access space and perform unique measurements of scientific value. The first science results from such Cube Sats have only recently become available; however, questions remain regarding the scientific potential and technological promise of Cube Sats in the future.Achieving Science with Cube Sats reviews the current state of the scientific potential and technological promise of Cube Sats. This report focuses on the platform’s promise to obtain high- priority science data, as defined in recent decadal surveys in astronomy and astrophysics, Earth science and applications from space, planetary science, and solar and space physics (heliophysics); the science priorities identified in the 2014 NASA Science Plan; and the potential for Cube Sats to advance biology and microgravity research. It provides a list of sample science goals for Cube Sats, many of which address targeted science, often in coordination with other spacecraft, or use "sacrificial, " or high-risk, orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of Cube Sats as constellations or swarms deploying tens to hundreds of Cube Sats that function as one distributed array of measurements.
Committee on Achieving Science Goals with CubeSats & Division on Engineering and Physical Sciences
Achieving Science with CubeSats [PDF ebook]
Thinking Inside the Box
Achieving Science with CubeSats [PDF ebook]
Thinking Inside the Box
购买此电子书可免费获赠一本!
语言 英语 ● 格式 PDF ● 网页 130 ● ISBN 9780309442640 ● 出版者 National Academies Press ● 发布时间 2016 ● 下载 3 时 ● 货币 EUR ● ID 7145144 ● 复制保护 Adobe DRM
需要具备DRM功能的电子书阅读器