INTRODUCTION TO DIFFERENTIAL GEOMETRY WITH TENSOR APPLICATIONS
This is the only volume of its kind to explain, in precise and easy-to-understand language, the fundamentals of tensors and their applications in differential geometry and analytical mechanics with examples for practical applications and questions for use in a course setting.
Introduction to Differential Geometry with Tensor Applications discusses the theory of tensors, curves and surfaces and their applications in Newtonian mechanics. Since tensor analysis deals with entities and properties that are independent of the choice of reference frames, it forms an ideal tool for the study of differential geometry and also of classical and celestial mechanics. This book provides a profound introduction to the basic theory of differential geometry: curves and surfaces and analytical mechanics with tensor applications. The author has tried to keep the treatment of the advanced material as lucid and comprehensive as possible, mainly by including utmost detailed calculations, numerous illustrative examples, and a wealth of complementing exercises with complete solutions making the book easily accessible even to beginners in the field.
Groundbreaking and thought-provoking, this volume is an outstanding primer for modern differential geometry and is a basic source for a profound introductory course or as a valuable reference. It can even be used for self-study, by students or by practicing engineers interested in the subject.
Whether for the student or the veteran engineer or scientist, Introduction to Differential Geometry with Tensor Applications is a must-have for any library.
This outstanding new volume:
* Presents a unique perspective on the theories in the field not available anywhere else
* Explains the basic concepts of tensors and matrices and their applications in differential geometry and analytical mechanics
* Is filled with hundreds of examples and unworked problems, useful not just for the student, but also for the engineer in the field
* Is a valuable reference for the professional engineer or a textbook for the engineering student
关于作者
Dipankar De, Ph D, received his BSc and MSc in mathematics from the University of Calcutta, India and his Ph D in mathematics from Tripura University, India. He has over 40 years of teaching experience and is an associate professor and guest lecturer in India. He has published many research papers in various reputed journal in the field of fuzzy mathematics and differential geometry.