John Toland 
The Dual of L∞(X, L, λ), Finitely Additive Measures and Weak Convergence [PDF ebook] 
A Primer

支持

In measure theory, a familiar representation theorem due to F. Riesz identifies the dual space Lp(X, L, λ)* with Lq(X, L, λ), where 1/p+1/q=1, as long as 1 ≤ p<∞. However, L∞(X, L, λ)* cannot be similarly described, and is instead represented as a class of finitely additive measures.

This book provides a reasonably elementary account of the representation theory of L∞(X, L, λ)*, examining pathologies and paradoxes, and uncovering some surprising consequences. For instance, a necessary and sufficient condition for a bounded sequence in L∞(X, L, λ) to be weakly convergent, applicable in the one-point compactification of X, is given.

With a clear summary of prerequisites, and illustrated by examples including L∞( R n) and the sequence space l∞, this book makes possibly unfamiliar material, some of which may be new, accessible to students and researchers in the mathematical sciences.

€69.54
支付方式

表中的内容

1 Introduction.- 2 Notation and Preliminaries.- 3 
L
∞ and its Dual.- 4 Finitely Additive Measures.- 5 G: 0-1 Finitely Additive Measures.- 6 Integration and Finitely Additive Measures.- 7 Topology on G.- 8 Weak Convergence in 
L
∞(X, L, λ).- 9 
L
∞* when X is a Topological Space.- 10 Reconciling Representations.- References.- Index.

关于作者

John Toland FRS is a mathematical analyst who worked in nonlinear partial differential equations and served as Director of the Isaac Newton Institute for Mathematical Sciences in Cambridge (2011-2016). He was awarded the London Mathematical Society Berwick Prize (2000) and the Royal Society Sylvester Medal (2012).

购买此电子书可免费获赠一本!
语言 英语 ● 格式 PDF ● 网页 99 ● ISBN 9783030347321 ● 文件大小 2.0 MB ● 出版者 Springer International Publishing ● 市 Cham ● 国家 CH ● 发布时间 2020 ● 下载 24 个月 ● 货币 EUR ● ID 7338147 ● 复制保护 社会DRM

来自同一作者的更多电子书 / 编辑

2,217 此类电子书