Kazuya Kato & Sampei Usui 
Classifying Spaces of Degenerating Polarized Hodge Structures [PDF ebook] 

支持

In 1970, Phillip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kazuya Kato and Sampei Usui realize this dream by creating a logarithmic Hodge theory. They use the logarithmic structures begun by Fontaine-Illusie to revive nilpotent orbits as a logarithmic Hodge structure.
The book focuses on two principal topics. First, Kato and Usui construct the fine moduli space of polarized logarithmic Hodge structures with additional structures. Even for a Hermitian symmetric domain D, the present theory is a refinement of the toroidal compactifications by Mumford et al. For general D, fine moduli spaces may have slits caused by Griffiths transversality at the boundary and be no longer locally compact. Second, Kato and Usui construct eight enlargements of D and describe their relations by a fundamental diagram, where four of these enlargements live in the Hodge theoretic area and the other four live in the algebra-group theoretic area. These two areas are connected by a continuous map given by the SL(2)-orbit theorem of Cattani-Kaplan-Schmid. This diagram is used for the construction in the first topic.

€104.99
支付方式

关于作者

Kazuya Kato is professor of mathematics at Kyoto University.
Sampei Usui is professor of mathematics at Osaka University.

购买此电子书可免费获赠一本!
语言 英语 ● 格式 PDF ● 网页 352 ● ISBN 9781400837113 ● 文件大小 3.8 MB ● 出版者 Princeton University Press ● 市 Princeton ● 国家 US ● 发布时间 2008 ● 下载 24 个月 ● 货币 EUR ● ID 5489340 ● 复制保护 Adobe DRM
需要具备DRM功能的电子书阅读器

来自同一作者的更多电子书 / 编辑

48,763 此类电子书