Oscar Zariski 
Moduli Problem for Plane Branches [PDF ebook] 

支持

Moduli problems in algebraic geometry date back to Riemann’s famous count of the $3g-3$ parameters needed to determine a curve of genus $g$. In this book, Zariski studies the moduli space of curves of the same equisingularity class. After setting up and reviewing the basic material, Zariski devotes one chapter to the topology of the moduli space, including an explicit determination of the rare cases when the space is compact. Chapter V looks at specific examples where the dimension of the generic component can be determined through rather concrete methods. Zariski’s last chapter concerns the application of deformation theory to the moduli problem, including the determination of the dimension of the generic component for a particular family of curves. An appendix by Bernard Teissier reconsiders the moduli problem from the point of view of deformation theory. He gives new proofs of some of Zariski’s results, as well as a natural construction of a compactification of the moduli space.

€58.55
支付方式
购买此电子书可免费获赠一本!
格式 PDF ● 网页 151 ● ISBN 9781470421830 ● 出版者 American Mathematical Society ● 发布时间 2015 ● 下载 3 时 ● 货币 EUR ● ID 8342355 ● 复制保护 Adobe DRM
需要具备DRM功能的电子书阅读器

来自同一作者的更多电子书 / 编辑

49,921 此类电子书