Patrick Marsch & Ömer Bulakci 
5G System Design [PDF ebook] 
Architectural and Functional Considerations and Long Term Research

支持

This book provides a comprehensive overview of the latest research and standardization progress towards the 5th generation (5G) of mobile communications technology and beyond. It covers a wide range of topics from 5G use cases and their requirements, to spectrum, 5G end-to-end (E2E) system architecture including core network (CN), transport network (TN) and radio access network (RAN) architecture, network slicing, security and network management. It further dives into the detailed functional design and the evaluation of different 5G concepts, and provides details on planned trials and pre-commercial deployments across the globe. While the book naturally captures the latest agreements in 3rd Generation Partnership Project (3GPP) New Radio (NR) Release 15, it goes significantly beyond this by describing the likely developments towards the final 5G system that will ultimately utilize a wide range of spectrum bands, address all envisioned 5G use cases, and meet or exceed the International Mobile Telecommunications (IMT) requirements for the year 2020 and beyond (IMT-2020).

5G System Design: Architectural and Functional Considerations and Long Term Research is based on the knowledge and consensus from 158 leading researchers and standardization experts from 54 companies or institutes around the globe, representing key mobile network operators, network vendors, academic institutions and regional bodies for 5G. Different from earlier books on 5G, it does not focus on single 5G technology components, but describes the full 5G system design from E2E architecture to detailed functional design, including details on 5G performance, implementation and roll-out.

€125.99
支付方式

表中的内容

Contributor List xvii

Foreword 1 xxiii

Foreword 2 xxv

Acknowledgments xxvii

List of Abbreviations xxix

Part 1 Introduction and Basics 1

1 Introduction and Motivation 3
Patrick Marsch, Ömer Bulakçı, Olav Queseth and Mauro Boldi

1.1 5 th Generation Mobile and Wireless Communications 3

1.2 Timing of this Book and Global 5G Developments 5

1.3 Scope of the 5G System Described in this Book 8

1.4 Approach and Structure of this Book 10

References 12

2 Use Cases, Scenarios, and their Impact on the Mobile Network Ecosystem 15
Salah Eddine Elayoubi, Michał Maternia, Jose F. Monserrat, Frederic Pujol, Panagiotis Spapis, Valerio Frascolla and Davide Sorbara

2.1 Introduction 15

2.2 Main Service Types Considered for 5G 16

2.3 5G Service Requirements 17

2.4 Use Cases Considered in NGMN and 5G PPP Projects 18

2.4.1 NGMN use Case Groups 20

2.4.2 Use Case Groups from 5G PPP Phase 1 Projects 23

2.4.3 Mapping of the 5G‐PPP Use Case Families to the Vertical Use Cases 23

2.5 Typical Use Cases Considered in this Book 25

2.5.1 Dense Urban Information Society 25

2.5.2 Smart City 26

2.5.3 Connected Cars 26

2.5.4 Industry Automation 27

2.5.5 Broadcast/Multicast Communications 27

2.6 Envisioned Mobile Network Ecosystem Evolution 28

2.6.1 Current Mobile Network Ecosystem 28

2.6.2 Identification of New Players and their Roles in 5G 28

2.6.3 Evolution of the MNO‐Centric Value Net 31

2.7 Summary and Outlook 33

References 34

3 Spectrum Usage and Management 35
Thomas Rosowski, Rauno Ruismaki, Luis M. Campoy, Giovanna D’Aria, Du Ho Kang and Adrian Kliks

3.1 Introduction 35

3.2 Spectrum Authorization and Usage Scenarios 36

3.2.1 Spectrum Authorization and Usage Options for 5G 36

3.2.2 Requirements for Different 5G Usage Scenarios 38

3.3 Spectrum Bandwidth Demand Determination 39

3.3.1 Main Parameters for Spectrum Bandwidth Demand Estimations 39

3.3.2 State of the Art of Spectrum Demand Analysis 40

3.3.3 Spectrum Demand Analysis on Localized Scenarios 40

3.4 Frequency Bands for 5G 41

3.4.1 Bands Identified for IMT and Under Study in ITU‐R 41

3.4.2 Further Potential Frequency Bands 43

3.4.3 5G Roadmaps 44

3.5 Spectrum Usage Aspects at High Frequencies 44

3.5.1 Propagation Challenges 45

3.5.2 Beamforming and 5G Mobile Coverage 45

3.5.3 Analysis of Deployment Scenarios 46

3.5.4 Coexistence of 5G Systems and Fixed Service Links 47

3.5.5 Coexistence under License‐exempt Operation 48

3.6 Spectrum Management 49

3.6.1 Evolutions in Dynamic Spectrum Management 49

3.6.2 Functional Spectrum Management Architecture 51

3.7 Summary and Outlook 53

References 54

4 Channel Modeling 57
Shangbin Wu, Sinh L. H. Nguyen and Raffaele D’Errico

4.1 Introduction 57

4.2 Core Features of New Channel Models 59

4.2.1 Path Loss 59

4.2.2 LOS Probability 61

4.2.3 O2I Penetration Loss 63

4.2.4 Fast Fading Generation 65

4.3 Additional Features of New Channel Models 65

4.3.1 Large Bandwidths and Large Antenna Arrays 65

4.3.2 Spatial Consistency 67

4.3.3 Blockage 68

4.3.4 Correlation Modeling for Multi‐Frequency Simulations 69

4.3.5 Ground Reflection 70

4.3.6 Diffuse Scattering 72

4.3.7 D2D, Mobility, and V2V Channels 72

4.3.8 Oxygen Absorption, Time‐varying Doppler Shift, Multi‐Frequency Simulations, and UE Rotation 73

4.3.9 Map‐based Hybrid Modeling Approach 74

4.4 Summary and Outlook 74

References 75

Part 2 5G System Architecture and E2E Enablers 79

5 E2E Architecture 81
Marco Gramaglia, Alexandros Kaloxylos, Panagiotis Spapis, Xavier Costa, Luis Miguel Contreras, Riccardo Trivisonno, Gerd Zimmermann, Antonio de la Oliva, Peter Rost and Patrick Marsch

5.1 Introduction 81

5.2 Enablers and Design Principles 82

5.2.1 Modularization 82

5.2.2 Network Slicing 82

5.2.3 Network Softwarization 84

5.2.4 Multi‐Tenancy 85

5.2.5 Mobile or Multi‐Access Edge Computing 87

5.3 E2E Architecture Overview 88

5.3.1 Physical Network Architecture 88

5.3.2 CN/RAN Split 90

5.3.3 Qo S Architecture 91

5.3.4 Spectrum Sharing Architecture Overview 93

5.3.5 Transport Network 93

5.3.6 Control and Orchestration 95

5.4 Novel Concepts and Architectural Extensions 97

5.4.1 Architecture Modularization for the Core Network 97

5.4.2 RRC States 99

5.4.3 Access‐agnostic 5G Core Network 100

5.4.4 Roaming Support 101

5.4.5 Softwarized Network Control 102

5.4.6 Control/User Plane Split 103

5.5 Internetworking, Migration and Network Evolution 104

5.5.1 Interworking with Earlier 3GPP RATs 105

5.5.2 Interworking with Non‐3GPP Access Networks 107

5.5.3 Network Evolution 111

5.6 Summary and Outlook 112

References 112

6 RAN Architecture 115
Patrick Marsch, Navid Nikaein, Mark Doll, Tao Chen and Emmanouil Pateromichelakis

6.1 Introduction 115

6.2 Related Work 116

6.2.1 3gpp 116

6.2.2 5g Ppp 117

6.3 RAN Architecture Requirements 118

6.4 Protocol Stack Architecture and Network Functions 119

6.4.1 Network Functions in a Multi‐AIV and Multi‐Service Context 119

6.4.2 Possible Changes in the 5G Protocol Stack Compared to 4G 121

6.4.3 Possible Service‐specific Protocol Stack Optimization in 5G 124

6.4.4 NF Instantiation for Multi‐Service and Multi‐Tenancy Support 127

6.5 Multi‐Connectivity 129

6.5.1 5G/(e)LTE Multi‐Connectivity 129

6.5.2 5G/5G Multi‐Connectivity 130

6.5.3 5G/Wi‐Fi Multi‐Connectivity 132

6.6 RAN Function Splits and Resulting Logical Network Entities 133

6.6.1 Control Plane/User Plane Split (Vertical Split) 134

6.6.2 Split into Centralized and Decentralized Units (Horizontal Split) 135

6.6.3 Most Relevant Overall Split Constellations 138

6.7 Deployment Scenarios and Related Physical RAN Architectures 141

6.7.1 Possible Physical Architectures Supporting the Deployment Scenarios 142

6.7.2 5G/(e)LTE and 5G Multi‐AIV Co‐Deployment 143

6.8 RAN Programmability and Control 144

6.9 Summary and Outlook 147

References 148

7 Transport Network Architecture 151
Anna Tzanakaki, Markos Anastasopoulos, Nathan Gomes, Philippos Assimakopoulos, Josep M. Fàbrega, Michela Svaluto Moreolo, Laia Nadal, Jesús Gutiérrez, Vladica Sark, Eckhard Grass, Daniel Camps‐Mur, Antonio de la Oliva, Nuria Molner, Xavier Costa Perez, Josep Mangues, Ali Yaver, Paris Flegkas, Nikos Makris, Thanasis Korakis and Dimitra Simeonidou

7.1 Introduction 151

7.2 Architecture Definition 153

7.2.1 User Plane 153

7.2.2 Control Plane 155

7.3 Technology Options and Protocols 158

7.3.1 Wireless Technologies 158

7.3.2 Optical Transport 161

7.3.3 Ethernet 165

7.4 Self‐Backhauling 165

7.4.1 Comparison with Legacy LTE Relaying 166

7.4.2 Technical Aspects of Self‐Backhauling 167

7.5 Technology Integration and Interfacing 168

7.5.1 Framing, Protocol Adaptation, Flow Identification and Control 168

7.5.2 PBB/MPLS Framing to Carry FH/BH and its Multi‐Tenancy Characteristic 169

7.6 Transport Network Optimization and Performance Evaluation 170

7.6.1 Evaluation of Joint FH and BH Transport 170

7.6.2 Experimental Evaluation of Layer‐2 Functional Splits 173

7.6.3 Monitoring in the Ethernet Fronthaul 174

7.7 Summary 178

References 178

8 Network Slicing 181
Alexandros Kaloxylos, Christian Mannweiler, Gerd Zimmermann, Marco Di Girolamo, Patrick Marsch, Jakob Belschner, Anna Tzanakaki, Riccardo Trivisonno, Ömer Bulakçı, Panagiotis Spapis, Peter Rost, Paul Arnold and Navid Nikaein

8.1 Introduction 181

8.2 Slice Realization in the Different Network Domains 183

8.2.1 Realization of Slicing in the Core Network 183

8.2.2 Slice Support on the Transport Network 186

8.2.3 Impact of Slicing on the Radio Access Network 187

8.2.4 Slice Support Across Different Administrative Domains 191

8.2.5 E2E Slicing: A Detailed Example 193

8.3 Operational Aspects 196

8.3.1 Slice Selection 196

8.3.2 Connecting to Multiple Slices 197

8.3.3 Slice Isolation 197

8.3.4 Radio Resource Management Among Slices 198

8.3.5 Managing Network Slices 199

8.4 Summary and Outlook 202

References 204

9 Security 207
Carolina Canales‐Valenzuela, Madalina Baltatu, Luciana Costa, Kai Habel, Volker Jungnickel, Geza Koczian, Felix Ngobigha, Michael C. Parker, Muhammad Shuaib Siddiqui, Eleni Trouva and Stuart D. Walker

9.1 Introduction 207

9.2 Threat Landscape 208

9.3 5G Security Requirements 209

9.3.1 Adoption of Software‐defined Networking and Virtualization Technologies 209

9.3.2 Security Automation and Management 210

9.3.3 Slice Isolation and Protection Against Side Channel Attacks in Multi‐Tenant Environments 211

9.3.4 Monitoring and Analytics for Security Purposes 211

9.4 5G Security Architecture 211

9.4.1 Overall Description 211

9.4.2 Infrastructure Security 213

9.4.3 Physical Layer Security 216

9.4.4 5G RAN Security 217

9.4.5 Service‐level Security 221

9.4.6 A Control and Management Framework for Automated Security 221

9.5 Summary 224

References 224

10 Network Management and Orchestration 227
Luis M. Contreras, Víctor López, Ricard Vilalta, Ramon Casellas, Raúl Muñoz, Wei Jiang, Hans Schotten, Jose Alcaraz‐Calero, Qi Wang, Balázs Sonkoly and László Toka

10.1 Introduction 227

10.2 Network Management and Orchestration Through SDN and NFV 228

10.2.1 Software-Defined Networking 229

10.2.2 Network Function Virtualization 232

10.3 Enablers of Management and Orchestration 233

10.3.1 Open and Standardized Interfaces 234

10.3.2 Modeling of Services and Devices 237

10.4 Orchestration in Multi‐Domain and Multi‐Technology Scenarios 238

10.4.1 Multi‐Domain Scenarios 238

10.4.2 Multi‐Technology Scenarios 244

10.5 Software‐Defined Networking for 5G 245

10.5.1 Xhaul Software‐Defined Networking 245

10.5.2 Core Transport Networks 250

10.6 Network Function Virtualization in 5G Environments 251

10.7 Autonomic Network Management in 5G 252

10.7.1 Motivation 252

10.7.2 Architecture of Autonomic Management 254

10.7.3 Autonomic Control Loop 255

10.7.4 Enabling Algorithms 257

10.8 Summary 258

References 259

Part 3 5G Functional Design 263

11 Antenna, PHY and MAC Design 265
Frank Schaich, Catherine Douillard, Charbel Abdel Nour, Malte Schellmann, Tommy Svensson, Hao Lin, Honglei Miao, Hua Wang, Jian Luo, Milos Tesanovic, Nuno Pratas, Sandra Roger and Thorsten Wild

11.1 Introduction 265

11.2 PHY and MAC Design Criteria and Harmonization 267

11.3 Waveform Design 269

11.3.1 Advanced Features and Design Aspects of Multi‐Carrier Waveforms 272

11.3.2 Comparison of Waveform Candidates for 5G 276

11.3.3 Co‐existence Aspects 280

11.3.4 General Framework for Multi‐Carrier Waveform Generation 281

11.4 Coding Approaches and HARQ 283

11.4.1 Coding Requirements 283

11.4.2 Coding Candidates 284

11.4.3 General Summary and Comparison 289

11.4.4 Hybrid Automatic Repeat re Quest (HARQ) 291

11.5 Antenna Design, Analog, Digital and Hybrid Beamforming 293

11.5.1 Multi‐Antenna Scheme Overview of 3GPP NR 294

11.5.2 Hybrid Beamforming 297

11.5.3 Digital Beamforming with Finite DACs 298

11.5.4 Massive Multiple‐Input Massive Multiple‐Output 298

11.6 PHY/MAC Design for Multi‐Service Support 300

11.6.1 Fundamental Frame Design Considerations 300

11.6.2 Initial Access 302

11.6.3 Control Channel Design 303

11.6.4 Data Channel Design 304

11.7 Summary and Outlook 310

References 311

12 Traffic Steering and Resource Management 315
Ömer Bulakçı, Klaus Pedersen, David Gutierrez Estevez, Athul Prasad, Fernando Sanchez Moya, Jan Christoffersson, Yang Yang, Emmanouil Pateromichelakis, Paul Arnold, Tommy Svensson, Tao Chen, Honglei Miao, Martin Kurras, Samer Bazzi, Stavroula Vassaki, Evangelos Kosmatos, Kwang Taik Kim, Giorgio Calochira, Jakob Belschner, Sergio Barberis and Taylan Şahin

12.1 Motivation and Role of Resource Management in 5G 315

12.2 Service Classification: A First Step Towards Efficient RM 317

12.2.1 Qo S Mechanisms in 5G Networks 317

12.2.2 A Survey of Traffic Classification Mechanisms 318

12.2.3 ML‐based Service Classification Approach 319

12.2.4 Numerical Evaluation of Service Classification Schemes 320

12.3 Dynamic Multi‐Service Scheduling 321

12.3.1 Scheduling Formats and Flexible Timing 323

12.3.2 Benefits of Scheduling with Variable TTI Size 324

12.3.3 Punctured/Preemptive Scheduling 326

12.4 Fast‐Timescale Dynamic Traffic Steering 328

12.4.1 Fast Traffic Steering 328

12.4.2 Proactive Traffic Steering in Heterogeneous Networks with mm Wave Bands 330

12.4.3 Multi‐Node Connectivity 332

12.5 Network‐based Interference Management 335

12.5.1 Interference Mitigation in Dynamic Radio Topology 336

12.5.2 Interference Management Based on Advanced Transceiver Designs 340

12.5.3 Interference Mitigation in Massive MIMO Dynamic TDD Systems 342

12.5.4 Multi‐Cell Pilot Coordination for UL Pilot Interference Mitigation 345

12.5.5 Interference Mitigation in mm Wave Deployments 347

12.6 Multi‐Slice RM 350

12.7 Energy‐efficient RAN Moderation 354

12.7.1 Coordinated Sleep Cycles for Energy Efficiency 354

12.7.2 Cell On/Off Coordination 356

12.8 UE Context Management 359

12.9 Summary and Outlook 360

References 361

13 Initial Access, RRC and Mobility 367
Mårten Ericson, Panagiotis Spapis, Mikko Säily, Klaus Pedersen, Yinan Qi, Nicolas Barati, Tommy Svensson, Mehrdad Shariat, Marco Giordani, Marco Mezzavilla, Mark Doll, Honglei Miao and Chan Zhou

13.1 Introduction 367

13.2 Initial Access 369

13.2.1 Initial Access in General 369

13.2.2 System Information and 5G RAN Lean Design 370

13.2.3 Configurable Downlink Synchronization for Unified Beam Operation 372

13.2.4 Digital Beamforming in the Initial Access Phase 374

13.2.5 Beam Finding for Low-Latency Initial Access 376

13.2.6 Optimized RACH Access Schemes 378

13.3 States and State Handling 381

13.3.1 Fundamentals of the RRC State Machine for 5G 381

13.3.2 Mobility Procedures for Connected Inactive 383

13.3.3 Configurability of the Connected Inactive State 385

13.3.4 Paging in Connected Inactive 387

13.3.5 Small Data Transmission in RRC Connected State 390

13.4 Mobility 391

13.4.1 Introduction 391

13.4.2 Mobility Management via UL‐based Measurements 391

13.4.3 Cluster-based Beam Mobility Framework 394

13.4.4 Partly UE‐autonomous Cell Management for Multi‐Connectivity Cases 397

13.4.5 Enhanced Synchronous Handover without Random Access 398

13.4.6 RAN Design to Support CSI Acquisition for High‐Mobility Users 401

13.5 Summary and Outlook 404

References 404

14 D2D and V2X Communications 409
Shubhranshu Singh, Ji Lianghai, Daniel Calabuig, David Garcia‐Roger, Nurul H. Mahmood, Nuno Pratas, Tomasz Mach and Maria Carmela De Gennaro

14.1 Introduction 409

14.1.1 Application Scenarios 410

14.1.2 Technical Challenges from 5G Design Perspective 411

14.2 Technical Status and Standardization Overview 412

14.2.1 D2D: 3GPP Standardization Overview 412

14.2.2 V2X: 3GPP Standardization Overview 413

14.2.3 ETSI ITS Communications Architecture and Protocol Stack 413

14.2.4 IEEE Wireless Access in Vehicular Environments – WAVE 416

14.2.5 Other Industry Organizations 417

14.3 5G Air Interface Candidate Waveforms for Sidelink Support 418

14.3.1 Synchronization Problems and Possible Solutions 418

14.3.2 Enhancements for V2X 421

14.4 Device Discovery on the Sidelink 424

14.4.1 Proximity Discovery Architecture 424

14.4.2 Network‐supported Proximity Discovery 424

14.4.3 Out‐of‐Coverage Proximity Discovery 425

14.4.4 Performance Evaluation of Device Discovery with Full‐Duplex Nodes 426

14.5 Sidelink Mobility Management 427

14.5.1 General Considerations 427

14.5.2 D2D Mobility Management Schemes 429

14.6 V2X Communications for Road Safety Applications 430

14.6.1 General System Design Aspects 430

14.6.2 Impact of the Existence of Several Message Ranges on the System Design 432

14.6.3 Distributed versus Centralized Radio Resource Management 434

14.7 Industrial Implementation of V2X in the Automotive Domain 434

14.7.1 Placement of the V2X Platform within the Vehicle 435

14.7.2 Test Deployments and Outcomes 436

14.8 Further Evolution of D2D Communications 438

14.8.1 Exploitation of D2D to Enhance m MTC Services 438

14.8.2 Radio Link Enabler in Reuse Mode to Improve System Capacity 440

14.8.3 Radio Resource Management for D2D 441

14.8.4 Cooperative D2D Communication 444

14.9 Summary and Outlook 445

References 446

Part 4 Performance Evaluation and Implementation 451

15 Performance, Energy Efficiency and Techno‐Economic Assessment 453
Michał Maternia, Jose F. Monserrat, David Martín‐Sacristán, Yong Wu, Changqing Yang, Mauro Boldi, Yu Bao, Frederic Pujol, Giuseppe Piro, Gennaro Boggia, Alessandro Grassi, Hans‐Otto Scheck, Ioannis‐Prodromos Belikaidis, Andreas Georgakopoulos, Katerina Demesticha and Panagiotis Demestichas

15.1 Introduction 453

15.2 Performance Evaluation Framework 454

15.2.1 IMT‐A Evaluation Framework 454

15.2.2 IMT‐2020 Evaluation Process and Framework 455

15.2.3 5G PPP Evaluation Framework 456

15.3 Network Energy Efficiency 467

15.3.1 Why is Network Energy Efficiency Important? 467

15.3.2 Energy Efficiency Metrics and Models 468

15.3.3 Energy Efficiency Metrics and Product Assessment in the Laboratory 471

15.3.4 Numeric Network Energy Efficiency Evaluation 471

15.4 Techno‐Economic Evaluation and Analysis of 5G Deployment 473

15.4.1 Economic Assessment of New Technology Deployment in Mobile Networks 474

15.4.2 Methodology of 5G Deployment Assessment 475

15.4.3 Techno‐Economic Evaluation and Deployment Analysis Results 477

15.5 Summary 478

References 479

16 Implementation of Hardware and Software Platforms 483
Chia‐Yu Chang, Dario Sabella, David García‐Roger, Dieter Ferling, Fredrik Tillman, Gian Michele Dell’Aera, Leonardo Gomes Baltar, Michael Färber, Miquel Payaró, Navid Nikaein, Pablo Serrano, Raymond Knopp, Sandra Roger, Sylvie Mayrargue and Tapio Rautio

16.1 Introduction 483

16.2 Solutions for Radio Frontend Implementation 484

16.2.1 Requirements on 5G Radio Frontends 484

16.2.2 Multi‐Band Transceivers 485

16.2.3 Multi‐Antenna Transceivers 487

16.2.4 Full‐Duplex Transceivers 490

16.2.5 Techniques for the Enhancement of Power Amplifier Efficiency 491

16.3 Solutions for Digital HW Implementation 492

16.3.1 Requirements on 5G Digital HW 492

16.3.2 Complexity Analysis of the Individual Implementation of New Waveforms 493

16.3.3 Complexity Analysis of a Multi‐Waveform Harmonized Implementation 496

16.3.4 Channel Decoder Implementations for 5G 501

16.4 Flexible HW/SW Partitioning Solutions for 5G 502

16.4.1 Architecture for Supporting MAC/PHY Cross‐Layer Reconfiguration 502

16.4.2 Cognitive Dynamic HW/SW Partitioning Algorithm 503

16.5 Implementation of SW Platforms 504

16.5.1 Functional Modules 504

16.5.2 SW Platform Solutions for Prototyping 5G Systems 505

16.6 Implementation Example: v RAN/C‐RAN Architecture in OAI 506

16.6.1 Overall Architecture 507

16.6.2 Deployment Topology 507

16.6.3 Performance Results 509

16.6.4 Deployment Environment 514

16.7 Summary 516

References 517

17 Standardization, Trials, and Early Commercialization 521
Terje Tjelta, Olav Queseth, Didier Bourse, Yves Bellego, Raffaele de Peppe, Hisham Elshaer, Frederic Pujol, Chris Pearson, Chen Xiaobei, Takehiro Nakamura, Akira Matsunaga, Hitoshi Yoshino, Yukihiko Okumura, Dong Ku Kim, Jinhyo Park and Hong Beom Jeon

17.1 Introduction 521

17.2 Standardization Roadmap 522

17.2.1 3GPP New Radio 522

17.2.2 Imt‐ 2020 524

17.2.3 3GPP e LTE 524

17.3 Early Deployments 526

17.3.1 Early Deployment in Europe 526

17.3.2 Early Deployment in Americas 531

17.3.3 Early Deployment in Asia 533

17.4 Summary 547

References 547

Index 551

关于作者

DR. PATRICK MARSCH has been heading research and R&D departments in NSN and Nokia, Poland, from 2011 to 2017, and is now Senior Project Manager, Digital Rail at Deutsche Bahn AG, Germany. Patrick has also been the technical manager of the 5G PPP METIS-II project, from which parts of this book have originated.
DR. ÖMER BULAKÇI is Senior Research Engineer, Huawei German Research Center (GRC), Munich, Germany. He has been vice-chairman of the 5G PPP Architecture Working Group, and work package leader in 5G PPP METIS-II and 5G-Mo NArch projects.
DR. OLAV QUESETH, is Master Researcher, Ericsson Research, Sweden. He has been chairman of the 5G PPP Pre-standards Working Group and the coordinator of the 5G PPP METIS-II project.
MAURO BOLDI works at Wireless Innovation, Telecom Italia, Italy. He has been the leader of dissemination and standardization in many European projects, such as 5G PPP METIS-II and 5G-Mo NArch.

购买此电子书可免费获赠一本!
语言 英语 ● 格式 PDF ● ISBN 9781119425137 ● 文件大小 15.3 MB ● 编辑 Patrick Marsch & Ömer Bulakci ● 出版者 John Wiley & Sons ● 国家 GB ● 发布时间 2018 ● 版 1 ● 下载 24 个月 ● 货币 EUR ● ID 6404611 ● 复制保护 Adobe DRM
需要具备DRM功能的电子书阅读器

来自同一作者的更多电子书 / 编辑

18,765 此类电子书